留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高Q腔法测试氮化硅纤维的介电性能

李庆辉 孔维纳 李喆 王少敏 王绍凯 顾轶卓 李敏

李庆辉, 孔维纳, 李喆, 等. 基于高Q腔法测试氮化硅纤维的介电性能[J]. 复合材料学报, 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
引用本文: 李庆辉, 孔维纳, 李喆, 等. 基于高Q腔法测试氮化硅纤维的介电性能[J]. 复合材料学报, 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
LI Qinghui, KONG Weina, LI Zhe, et al. Dielectric properties measurements on silicon nitride fiber based on high-Q cavity method[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003
Citation: LI Qinghui, KONG Weina, LI Zhe, et al. Dielectric properties measurements on silicon nitride fiber based on high-Q cavity method[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2240-2249. doi: 10.13801/j.cnki.fhclxb.20200115.003

基于高Q腔法测试氮化硅纤维的介电性能

doi: 10.13801/j.cnki.fhclxb.20200115.003
详细信息
    通讯作者:

    李敏,教授,博士生导师,研究方向为先进树脂基复合材料 E-mail:leemy@buaa.edu.cn

  • 中图分类号: TB332

Dielectric properties measurements on silicon nitride fiber based on high-Q cavity method

  • 摘要: 氮化硅纤维具有优异的耐高温性能和透波能力,是理想的高温透波增强材料。本文对高Q腔法测试陶瓷纤维介电性能的样品制备和测试方法进行了研究和优化。研究发现,介电测试试样中纤维含量应不低于20wt%,含量过低易导致计算所得的纤维介电常数偏低;同时短切纤维的长度主要影响介电测试数据的离散性,由长度不大于1.0 mm的短纤维所制试样质量高,介电测试结果稳定性更佳。对比讨论了Lichtenecker、Bruggeman和Looyenga三种介电混合模型的适用性,最终基于Lichtenecker介电常数对数混合法则计算得到石英纤维的相对介电常数与文献报道数据较一致。分析表明,氮化硅纤维在10 GHz频率下的相对介电常数为4.4,损耗角正切值为0.0005,是优异的低介电高透波材料。同时,表面上浆剂通过改变纤维表面极性特征,对氮化硅纤维介电性能尤其介电损耗产生显著影响。

     

  • 图  1  不同方式去剂前后氮化硅纤维表面的SEM图像

    SIN-B—Bare fibers; SIN-S—As-received fibers; SIN-A—Fibers removed sizing agent with acetone; SIN-H—Fibers removed sizing agent with water

    Figure  1.  SEM images of surface of silicon nitride fibers before and after sizing removal in different ways (((a), (b)) SIN-B; ((c), (d)) SIN-S; ((e), (f)) SIN-A; ((g), (h)) SIN-H)

    图  2  不同方法制备的氮化硅纤维/石蜡复合材料介电测试试样

    Figure  2.  Dielectric test samples of silicon nitride fiber/paraffin wax composites prepared by different methods

    图  3  不同纤维含量的氮化硅纤维/石蜡复合材料依据三种混合模型估算所得氮化硅纤维的相对介电常数

    Figure  3.  Permittivities of silicon nitride fiber evaluated by three dielectric mixture models according to silicon nitride fiber/paraffin wax composites with different fiber contents

    图  4  不同切割长度的氮化硅纤维/石蜡复合材料的相对介电常数

    Figure  4.  Relative permittivity of silicon nitride fiber/paraffin wax composites with different chopped lengths of silicon nitride fiber

    图  5  不同切割长度的氮化硅纤维/石蜡复合材料的照片

    Figure  5.  Photographs of silicon nitride fiber/paraffin wax composites with different chopped lengths of silicon nitride fiber

    图  6  同一氮化硅纤维/石蜡复合材料不同时间相对介电常数测试结果

    Figure  6.  Permitvities of silicon nitride fiber/paraffin wax composites sample obtained at different times

    图  7  高Q腔法测试得到的石英纤维的相对介电常数

    Figure  7.  Permittivities of quartz fiber based on high-Q cavity method

    图  8  不同方式去剂的氮化硅纤维的相对介电常数及损耗角正切

    Figure  8.  Permittivities and dielectric loss tangent of silicon nitride fibers after sizing removal by different methods

    表  1  表面能测试试剂相关参数

    Table  1.   Parameters of surface energy test reagent

    ReagentSurface energy/(mJ·m2)
    $\gamma _{\rm{L} }^{}$$\gamma _{\rm{L}}^{\rm{d}} $$\gamma _{\rm{L}}^{\rm{p}} $
    H2O 72.8 21.8 51.0
    Formamide 58.2 39.5 18.7
    Methylene iodide 50.8 48.5 2.3
    Notes:${\gamma _{\rm{L} }^{} }$,$\gamma _{\rm{L}}^{\rm{d}} $, $\gamma _{\rm{L}}^{\rm{p}} $—Solid-liquid surface tension, dispersion and polarity property, respectively.
    下载: 导出CSV

    表  2  不同方法制备的氮化硅纤维/石蜡复合材料及反演的氮化硅纤维的介电性能

    Table  2.   Dielectric properties of silicon nitride fiber/paraffin wax composites and silicon nitride fiber prepared by different methods

    Type
    Frequency/
    MHz
    Permittivity by testPermittivity of fiber calculated by Lichtenecker formula
    ε1ε2Averageε1ε2DifferenceAverage
    UB 7 382 2.33 2.34 2.34 2.33 3.23 0.90 2.74
    8 173 2.33 2.35 2.34 2.33 4.47 2.14 3.23
    9 335 2.33 2.35 2.34 2.33 4.47 2.14 3.23
    10 736 2.33 2.35 2.34 2.33 4.47 2.14 3.23
    12 283 2.33 2.35 2.34 2.33 4.47 2.14 3.23
    13 914 2.34 2.35 2.35 3.23 4.47 1.24 3.80
    15 607 2.33 2.35 2.34 2.33 4.47 2.14 3.23
    17 348 2.33 2.34 2.34 2.33 3.23 0.90 2.74
    FMB 7 382 2.49 2.49 2.49 4.75 4.75 0 4.75
    8 173 2.49 2.50 2.50 4.75 4.95 0.20 4.85
    9 334 2.49 2.50 2.50 4.75 4.95 0.20 4.85
    10 733 2.49 2.49 2.49 4.75 4.75 0 4.75
    12 277 2.47 2.49 2.48 4.38 4.75 0.37 4.56
    13 905 2.47 2.49 2.48 4.38 4.75 0.37 4.56
    15 592 2.47 2.48 2.48 4.38 4.56 0.18 4.47
    17 331 2.46 2.48 2.47 4.20 4.56 0.36 4.38
    Notes:ε1, ε2—Permittivity of the front and back of the samples or fibers; Difference and average are the differences and averages of ε1 and ε2.
    下载: 导出CSV

    表  3  氮化硅纤维上浆剂薄膜丙酮处理前后的表面能及极性/色散比

    Table  3.   Surface energy and ratio of polarity to dispersion of silicon nitride fibers’ sizing film before and after treated by acetone

    SampleSurface energy
    $\gamma _{\rm{S} }^{}$/
    (mJ·m2)
    $\gamma_{\rm{S} }^{\rm{p} }$/
    (mJ·m2)
    $\gamma_{\rm{S} }^{\rm{d} }$/
    (mJ·m2)
    $\gamma_{\rm{S} }^{\rm{p} }$/$\gamma_{\rm{S} }^{\rm{d} }$
    Sizing film 63.6 22.3 41.4 0.54
    Acetone treated sizing film 67.2 34.1 33.1 1.03
    Notes:${\gamma _{\rm{S} }^{} }$,$\gamma _{\rm{S}}^{\rm{d}} $, $\gamma _{\rm{S}}^{\rm{p}} $—Solid surface energy, dispersion and polarity property, respectively.
    下载: 导出CSV
  • [1] TAKI T, INUI M, OKAMURA K, et al. A study of nitridation process of polycarbosilane fibers by solid-state high-resolution NMR[J]. Applied Magnetic Resonance,1991,2(1):61-68. doi: 10.1007/BF03166267
    [2] PETZOW G, HERRMANN M. Silicon nitride ceramics[J]. Structure and Bonding,2009,102:47-167.
    [3] TAKI T, OKAMURA K, SATO M, et al. A study on the electron irradiation curing mechanism of polycarbosilane fibres by solid-state<sup>29</sup>Si high-resolution nuclear magnetic resonance spectroscopy[J]. Journal of Materials Science Letters,1988,7(3):209-211. doi: 10.1007/BF01730172
    [4] 邹春荣, 张长瑞, 肖永栋, 等. 高性能透波陶瓷纤维的研究现状和展望[J]. 硅酸盐通报, 2013, 32(2):274-279.

    ZOU Chunrong, ZHANG Changrui, XIAO Yongdong, et al. Progress and prospect of high performance wave-transparent ceramic fibers[J]. Bulletin of the Chinese Ceramic Society,2013,32(2):274-279(in Chinese).
    [5] 李端, 张长瑞, 李斌, 等. 氮化硅高温透波材料的研究现状和展望[J]. 宇航材料工艺, 2011, 41(6):4-9. doi: 10.3969/j.issn.1007-2330.2011.06.002

    LI Duan, ZHANG Changrui, LI Bin, et al. High temperature wave-transparent silicon nitride materials[J]. Aerospace Materials <italic>&</italic> Technology,2011,41(6):4-9(in Chinese). doi: 10.3969/j.issn.1007-2330.2011.06.002
    [6] ZHOU J, YE F, CUI X, et al. Mechanical and dielectric properties of two types of Si<sub>3</sub>N<sub>4</sub> fibers annealed at elevated temperatures[J]. Materials,2018,11(9):1498.
    [7] 赵晓明, 李卫斌, 赵家琪, 等. 涤纶纤维介电性能研究[J]. 成都纺织高等专科学校学报, 2016, 33(1):89-93.

    ZHAO Xiaoming, LI Weibin, ZHAO Jiaqi, et al. Research on dielectric properties of polyester fiber[J]. Journal of Chengdu Textile College,2016,33(1):89-93(in Chinese).
    [8] 伏金刚, 朱冬梅, 罗发, 等. 短切碳纤维/环氧树脂复合材料的介电性能研究[J]. 材料导报, 2012, 26(18):58-60. doi: 10.3969/j.issn.1005-023X.2012.18.016

    FU Jingang, ZHU Dongmei, LUO Fa, et al. Dielectric properties of short carbon fiber filled epoxy resins composites[J]. Materials Review,2012,26(18):58-60(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.18.016
    [9] 陈平, 张显友, 陈辉. 纤维含量及排列方向对单向纤维复合材料介电性能的影响[J]. 复合材料学报, 1993, 10(2):61-67.

    CHEN Ping, ZHANG Xianyou, CHEN Hui. Influence of content and orientation of fiber on the electrical properties of unidirectional composites[J]. Acta Materiae Compositae Sinica,1993,10(2):61-67(in Chinese).
    [10] 伏金刚, 朱冬梅, 周万城, 等. 定向分布碳纤维复合材料介电性能研究[J]. 无机材料学报, 2012, 27(11):1223-1227.

    FU Jingang, ZHU Dongmei, ZHOU Wancheng, et al. Anisotropic dielectric properties of short carbon fiber composites[J]. Journal of Inorganic Materials,2012,27(11):1223-1227(in Chinese).
    [11] 张灵林. 碳纤维增强树脂基复合材料微波固化机理[D]. 南京: 南京航空航天大学, 2018.

    ZHANG Linglin. Microwave curing mechanism of carbon fiber reinforced polymer composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [12] 高正平, 王晓红. 多层吸波材料的电磁参数反演[J]. 材料工程, 2006(7):19-22, 27.

    GAO Zhengping, WANG Xiaohong. Inverse for EM parameters of multilayer absorbing material[J]. Journal of Materials Engineering,2006(7):19-22, 27(in Chinese).
    [13] 饶克谨, 高正平. 碳纤维多向铺层板的雷达反射特性[J]. 电子科技大学学报, 1998, 27(4):397-402.

    RAO Kejin, GAO Zhengping. Radar reflection characteristics of multi-plies carbon fiber[J]. Journal of University Electronic Science and Technology of China,1998,27(4):397-402(in Chinese).
    [14] GAO H, LUO F, WEN Q, et al. Effect of preparation conditions on mechanical, dielectric and microwave absorption properties of SiC fiber/mullite matrix composite[J]. Ceramics International,2019,45(9):11625-11632. doi: 10.1016/j.ceramint.2019.03.034
    [15] OMRI M A, SANJAY M R, TRIKI A, et al. Dielectric properties and interfacial adhesion of jute, kenaf and E-glass fabrics reinforcing epoxy composites[J]. Polymer Composites,2019,40(6):2142-2153. doi: 10.1002/pc.25001
    [16] KUANG J, HOU X, XIAO T, et al. Enhanced dielectric permittivity and microwave absorbing properties of Au-decorated SiC nanowires[J]. Japanese Journal of Applied Physics,2019,58(6):060916.
    [17] 曾娟娟. 碳纳米纤维/聚合物基复合材料的结晶行为和介电性能研究[D]. 北京: 北京化工大学, 2013.

    ZENG Juanjuan. The crystallization behavior and dielectric properties of carbon nanofibers/polymer composites[D]. Beijing: Beijing University of Chemical Technology, 2013(in Chinese).
    [18] WESTPHAL W B, IGLESIAS J. Dielectric measurements on high-temperature materials: AFML TR70-138[R]. Cambridge: Massachusetts Institute of Technology Cambridge, 1970.
    [19] 黎义, 李建保, 何小瓦. 采用谐振腔法研究透波材料的高温介电性能[J]. 红外与毫米波学报, 2004, 23(2):157-160. doi: 10.3321/j.issn:1001-9014.2004.02.017

    LI Yi, LI Jianbao, HE Xiaowa, et al. Study on high temperature dielectric properties of magnetic window materials by cavity resonator method[J]. Journal of Infrared and Millimeter Waves,2004,23(2):157-160(in Chinese). doi: 10.3321/j.issn:1001-9014.2004.02.017
    [20] LI E, LI Z, NIE Z, et al. Measurement of complex permittivity of dielectrics at high temperatures by using cylindrical cavity[C]//2008 China-Japan Joint Microwave Conference. Shanghai: IEEE, 2008: 707-709.
    [21] 李军奇, 周万城, 罗发, 等. 晶相组成对Si<sub>3</sub>N<sub>4</sub>陶瓷介电性能的影响[J]. 稀有金属材料与工程, 2009, 38(s2):384-386.

    LI Junqi, ZHOU Wancheng, LUO Fa, et al. Influence of crystal phase on dielectric properties of silicon nitride ceramics[J]. Rare Metal Materials and Engineering,2009,38(s2):384-386(in Chinese).
    [22] 李巍. 低耗介质介电参数的圆柱腔测量方法研究[D]. 西安: 西北工业大学, 2006.

    LI Wei. Research on cylindrical cavity measurement method for low-consumption dielectric parameters[D]. Xi’an: Northwestern Polytechnical University, 2006(in Chinese).
    [23] 胡暄, 纪小宇, 邵长伟, 等. 连续氮化硅陶瓷纤维的组成结构与性能研究[J]. 功能材料, 2016, 47(s1):123-126.

    HU Xuan, JI Xiaoyu, SHAO Changwei, et al. Composition, structure and properties of continuous silicon nitride fibers[J]. Journal of Functional Materials,2016,47(s1):123-126(in Chinese).
    [24] LICHTENECKER K. Die Dielektrizitätskonstante natürlicher und künstlicher mischkörper[J]. Physikalische Zeitschrift,1926,27:115-158.
    [25] LICHTENECKER K, ROTHER K. Die herleitung des logarithmischen mischungs-gesetzes aus allegemeinen prinzipien der stationaren stromung[J]. Physikalische Zeitschrift,1931,32:255-260.
    [26] 张娟, 周明星, 张敬义, 等. 透波氮化硅纤维的综合性能评价表征研究[J]. 宇航材料工艺, 2019, 49(4):72-75, 94. doi: 10.12044/j.issn.1007-2330.2019.04.014

    ZHANG Juan, ZHOU Mingxing, ZHANG Jingyi, et al. Characterization and properties of new silicon nitride fibers for wave-transmitting[J]. Aerospace Materials <italic>&</italic> Technology,2019,49(4):72-75, 94(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.04.014
    [27] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747.
    [28] 中国国家标准化管理委员会. 固体电介质微波复介电常数的测试方法: GB/T 5597—1999[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test method for complex permittivity of solid dielectric materials at microwave frequencies: GB/T 5597—1999[S]. Beijing: China Standards Press, 2009(in Chinese).
    [29] BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen Ⅱ: Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme[J]. Annalen der Physik,1936,417(7):645-672. doi: 10.1002/andp.19364170706
    [30] LOOYENGA H. Dielectric constants of homogeneous mixture[J]. Molecular Physics,1965,9(6):501-511. doi: 10.1080/00268976500100671
    [31] SIMPKIN R. Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations[J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(3):545-550. doi: 10.1109/TMTT.2010.2040406
    [32] TUNCER E. The Landau-Lifshitz/Looyenga dielectric mixture expression and its self-similar fractal nature[EB/OL]. (2005-03-31) [2019-10-16]. http://arxiv.org/abs/cond-mat/0503750.
    [33] MARQUARDT P, NIMTZ G. Size-governed electromagnetic absorption by metal particles[J]. Physical Review B,1989,40(11):7996-7998. doi: 10.1103/PhysRevB.40.7996
    [34] GONCHARENKO A V, LOZOVSKI V Z, VENGER E F. Lichtenecker’s equation: Applicability and limitations[J]. Optics Communications,2000,174(1-4):19-32.
    [35] MACKAY T G. Bruggeman formalism versus “Bruggeman formalism”: Particulate composite materials comprising oriented ellipsoidal particles[J]. Journal of Nanophotonics,2012,6(1):069501. doi: 10.1117/1.JNP.6.069501
    [36] MACKAY T G, LAKHTAKIA A. A limitation of the Bruggeman formalism for homogenization[J]. Optics Communications,2004,234(1-6):35-42.
    [37] KAMPIA R D, LAKHTAKIA A. Bruggeman model for chiral particulate composites[J]. Journal of Physics D: Applied Physics,1992,25(10):1390-1394. doi: 10.1088/0022-3727/25/10/002
    [38] STAICOPOLUS D N. The computation of surface tension and of contact angle by the sessile-drop method[J]. Journal of Colloid Science,1962,17(5):439-447. doi: 10.1016/0095-8522(62)90055-7
    [39] FOWKES F M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces[J]. Journal of Physical Chemistry,1962,66(2):382.
    [40] 李刚, 欧书方, 赵敏健. 石英玻璃纤维的性能和用途[J]. 玻璃纤维, 2007(4):9-13, 16.

    LI Gang, OU Shufang, ZHAO Minjian. Properties and uses of quartz glass fiber[J]. Fiber Glass,2007(4):9-13, 16(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  973
  • HTML全文浏览量:  336
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-01-14
  • 网络出版日期:  2020-01-16
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回