留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能

刘秀玉 张冰 韩祥祥 刘亚辉 赵石旭 唐刚

刘秀玉, 张冰, 韩祥祥, 等. 空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能[J]. 复合材料学报, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
引用本文: 刘秀玉, 张冰, 韩祥祥, 等. 空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能[J]. 复合材料学报, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
LIU Xiuyu, ZHANG Bing, HAN Xiangxiang, et al. Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002
Citation: LIU Xiuyu, ZHANG Bing, HAN Xiangxiang, et al. Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2094-2104. doi: 10.13801/j.cnki.fhclxb.20200115.002

空心玻璃微珠/硬质聚氨酯泡沫复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20200115.002
基金项目: 国家自然科学基金(51403004);中国博士后科学基金面上项目(2017M610399);四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地开放基金(17kffk14)
详细信息
    通讯作者:

    唐刚,博士,副教授,硕士生导师,研究方向为阻燃聚合物复合材料、有机建筑保温材料 E-mail:gangtang@mail.ustc.edu.cn

  • 中图分类号: TQ 328.3

Preparation and properties of hollow glass microspheres/rigid polyurethane foam composites

  • 摘要: 以空心玻璃微珠(HGM)为添加剂,采用一步法全水发泡制备了一系列HGM/硬质聚氨酯泡沫(RPUF)复合材料。通过SEM、TG、极限氧指数(LOI)和水平燃烧,研究了HGM/RPUF复合材料的泡孔结构、炭层形貌、热稳定性及阻燃性能。采用万能材料试验机测试了HGM/RPUF复合材料的压缩强度和压缩弹性模量。采用热重-傅里叶红外光谱(TG-FTIR)研究了HGM/RPUF复合材料燃烧过程中的气相产物。研究表明,HGM有成核剂作用,可以缩小HGM/RPUF复合材料泡孔孔径。HGM在燃烧过程中迁移到炭层表面,促进形成致密厚实的炭层。当加入5.4wt% HGM时,HGM/RPUF复合材料的压缩强度及压缩弹性模量分别提高至0.14 MPa和4.53 MPa,相对RPUF,分别提高了37.30%和67.16%。同时发现,HGM能明显抑制HGM/RPUF复合材料在燃烧过程中CO的释放,有效提高了其火灾安全性。

     

  • 图  1  HGM的SEM图像及XPS图谱

    Figure  1.  SEM image and XPS spectrum of HGM

    图  2  RPUF和HGM/RPUF复合材料的SEM图像

    Figure  2.  SEM images of RPUF and HGM/RPUF composites((a) RPUF; (b) HGM3.7/RPUF; (c) HGM7.1/RPUF; (d) HGM10.3/RPUF)

    图  3  HGM添加量对HGM/RPUF复合材料极限氧指数(LOI)的影响

    Figure  3.  Effect of HGM loading on limiting oxygen index(LOI) of HGM/RPUF composites

    图  4  RPUF和HGM/RPUF复合材料压缩强度和压缩弹性模量

    Figure  4.  Compressive strength and compressive elastic modulus of RPUF and HGM/RPUF composites

    图  5  RPUF和HGM/RPUF复合材料在空气条件下的TG及DTG曲线

    Figure  5.  TG and DTG curves of RPUF and HGM/RPUF composites under air condition

    图  6  RPUF和HGM/RPUF复合材料炭渣的SEM图像

    Figure  6.  SEM images of char residues for RPUF and HGM/RPUF composites((a) RPUF; (b) HGM3.7/RPUF; (c) HGM7.1/RPUF; (d) HGM10.3/RPUF)

    图  7  RPUF和HGM10.3/RPUF复合材料气相产物的3D TG-FTIR图谱

    Figure  7.  3D TG-FTIR spectra of volatilized products of RPUF and HGM10.3/RPUF composite

    图  8  RPUF和HGM10.3/RPUF复合材料最大热失重速率裂解产物的FTIR图谱

    Figure  8.  FTIR spectra of pyrolysis products at maximum decomposition rate for RPUF and HGM10.3/RPUF composite

    图  9  RPUF和HGM10.3/RPUF复合材料的裂解产物强度随时间的变化曲线

    Figure  9.  Absorbance changes of pyrolysis products for RPUF and HGM10.3/RPUF composite with time

    图  10  HGM对HGM/RPUF复合材料的阻燃机制

    Figure  10.  Flame retardant mechanism of HGM to HGM/RPUF composites

    表  1  硬质聚氨酯泡沫(RPUF)和空心玻璃微珠(HGM)/RPUF复合材料组成

    Table  1.   Composition of rigid polyurethane foam(RPUF) and hollow glass microspheres(HGM)/RPUF composites

    SampleLY-4110/gPM-200/gLC/gAK-8805/gA33/gWater/gTEOA/gHGM/gHGM/wt%
    RPUF 100 150 0.5 2 1 4 3 0 0
    HGM1.9/RPUF 100 150 0.5 2 1 4 3 5 1.9
    HGM3.7/RPUF 100 150 0.5 2 1 4 3 10 3.7
    HGM5.4/RPUF 100 150 0.5 2 1 4 3 15 5.4
    HGM7.1/RPUF 100 150 0.5 2 1 4 3 20 7.1
    HGM8.8/RPUF 100 150 0.5 2 1 4 3 25 8.8
    HGM10.3/RPUF 100 150 0.5 2 1 4 3 30 10.3
    Notes: LY-4110—Polyether polyol; PM-200—Polyaryl polymethylene isocyanate; LC—Dibutyltin dilaurate; AK-8805—Silicone surfactant; A33—Triethylene diamine; TEOA—Triethanolamine; HGM1.9/RPUF—Hollow glass microspheres/rigid polyurethane foam composites (subscript number represents the mass fraction of hollow glass microspheres).
    下载: 导出CSV

    表  2  HGM的EDS结果

    Table  2.   EDS results of HGM

    ElementCONaSiCa
    Mass fraction/wt% 27.50 46.57 2.63 18.78 4.52
    Atom fraction/at% 37.56 47.75 1.88 10.97 1.85
    下载: 导出CSV

    表  3  RPUF和HGM/RPUF复合材料的密度及导热系数

    Table  3.   Density and thermal conductivity of RPUF and HGM/RPUF composites

    Sampleρ/(kg·m–3)λ/(W (m·K) –1)
    RPUF 38.55 0.0363
    HGM1.9/RPUF 39.18 0.0365
    HGM3.7/RPUF 38.89 0.0373
    HGM5.4/RPUF 39.78 0.0379
    HGM7.1/RPUF 39.49 0.0363
    HGM8.8/RPUF 41.64 0.0363
    HGM10.3/RPUF 40.95 0.0371
    Notes: ρ—Density; λ—Thermal conductivity.
    下载: 导出CSV

    表  4  RPUF和HGM/RPUF复合材料的LOI及水平燃烧速度

    Table  4.   LOI and horizontal burning rate of RPUF and HGM/RPUF composites

    SampleLOI/%V/(mm·min−1)
    RPUF 19.6 313.5
    HGM1.9/RPUF 20.2 290.3
    HGM3.7/RPUF 20.3 261.2
    HGM5.4/RPUF 20.4 243.0
    HGM7.1/RPUF 20.6 228.7
    HGM8.8/RPUF 20.8 200.0
    HGM10.3/RPUF 20.9 184.6
    Note: V—Horizontal burning rate.
    下载: 导出CSV

    表  5  RPUF和HGM/RPUF复合材料在空气条件下的TG及DTG数据

    Table  5.   TG and DTG data of RPUF and HGM/RPUF composites under air condition

    SampleT–5%/℃T–50%/℃Tmax1/℃Tmax2/℃Residue at 700℃/wt%
    RPUF 254 360 337 568 2.0
    HGM3.7/RPUF 280 380 338 564 7.1
    HGM7.1/RPUF 274 418 337 566 7.8
    HGM10.3/RPUF 262 365 339 568 10.9
    Notes: T–5%—Onset degradation temperature; T–50%—Midpoint temperature of degradation; T1max, T2max—Maximum decomposition temperature in the first and second stage, respectively.
    下载: 导出CSV
  • [1] PARUZEL A, MICHALOWSKI S, HODAN J, et al. Rigid polyurethane foam fabrication using medium chain glycerides of coconut oil and plastics from end-of-life vehicles[J]. ACS Sustainable Chemistry & Engineering,2017,5(7):6237-6246.
    [2] FURTWENGLER P, AVEROUS L. Renewable polyols for advanced polyurethane foams from diverse biomass resources[J]. Polymer Chemistry,2018,9(32):4258-4287. doi: 10.1039/C8PY00827B
    [3] YANG R, HU W T, XU L, et al. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate[J]. Polymer Degradation and Stability,2015,122:102-109. doi: 10.1016/j.polymdegradstab.2015.10.007
    [4] XU W Z, WANG G S, XU J Y, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. Journal of Hazardous Materials,2019,379:120819.
    [5] BIAN X C, TANG J H, LI Z M. Flame retardancy of whisker silicon oxide/rigid polyurethane foam composites with expandable graphite[J]. Journal of Applied Polymer Science,2008,110(6):3871-3879. doi: 10.1002/app.28921
    [6] PIELICHOWSKI K, SLOTWINSKA D. Morphological features and flammability of MDI/HMDI-based segmented polyurethanes containing 3-chloro-1,2-propanediol in the main chain[J]. Polymer Degradation and Stability,2003,80(2):327-331. doi: 10.1016/S0141-3910(03)00016-8
    [7] CAO Z J, DONG X, FU T, et al. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams[J]. Polymer Degradation and Stability,2017,136:103-111. doi: 10.1016/j.polymdegradstab.2016.12.004
    [8] LUO F B, WU K, LU M G, et al. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam[J]. Journal of Thermal Analysis and Calorimetry,2015,120(2):1327-1335. doi: 10.1007/s10973-015-4425-3
    [9] XU D M, LIU X, FENG J, et al. Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam[J]. Chemical Research in Chinese Universities,2015,31(2):315-320. doi: 10.1007/s40242-015-4101-y
    [10] ZHENG X R, WANG G J, XU W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam[J]. Polymer Degradation and Stability,2014,101:32-39. doi: 10.1016/j.polymdegradstab.2014.01.015
    [11] LUO F B, WU K, LI Y W, et al. Reactive flame retardant with core-shell structure and its flame retardancy in rigid polyurethane foam[J]. Journal of Applied Polymer Science,2015,132(46):42800.
    [12] ACUNA P, LI Z, SANTIAGO-CALVO M, et al. Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam[J]. Polymers,2019,11(1):168. doi: 10.3390/polym11010168
    [13] KIM H, PARK J, MINN K S, et al. Flame retardant composite foam modified by silylated nanocellulose and tris(2-chloropropyl) phosphate[J]. Fibers and Polymers,2019,20(11):2280-2288. doi: 10.1007/s12221-019-9491-x
    [14] GENG H T, LIU J C, GUO A R, et al. Fabrication of heat-resistant syntactic foams through binding hollow glass microspheres with phosphate adhesive[J]. Materials & Design,2016,95:32-38.
    [15] REN S, LIU J C, GUO A R, et al. Mechanical properties and thermal conductivity of a temperature resistance hollow glass microspheres/borosilicate glass buoyance material[J]. Materials Science and Engineering A,2016,674:604-614. doi: 10.1016/j.msea.2016.08.014
    [16] VAHTRUS M, ORAS S, ANTSOV M, et al. Mechanical and thermal properties of epoxy composite thermal insulators filled with silica aerogel and hollow glass microspheres[J]. Proceedings of the Estonian Academy of Sciences,2017,66(4):339-346. doi: 10.3176/proc.2017.4.03
    [17] YANG H Y, JIANG Y P, LIU H Y, et al. Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin[J]. Journal of Colloid and Interface Science,2018,530:163-170. doi: 10.1016/j.jcis.2018.06.075
    [18] JIAO C M, WANG H Z, CHEN X L. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry,2018,133(3):1471-1480. doi: 10.1007/s10973-018-7190-2
    [19] XIANG Y S, WANG L J, YANG Z, et al. Effect of aluminum phosphinate on the flame-retardant properties of epoxy syntactic foams[J]. Journal of Thermal Analysis and Calorimetry,2019,137(5):1645-1656. doi: 10.1007/s10973-019-08051-9
    [20] 王彩华, 李慧剑, 余为, 等. 空心玻璃微珠增强环氧树脂复合材料的动态力学性能[J]. 复合材料学报, 2018, 35(5):1105-1113.

    WANG C H, LI H J, YU W, et al. Dynamic mechanical properties analysis of hollow glass microsphere reinforced epoxy resin composite[J]. Acta Materiae Compositae Sinica,2018,35(5):1105-1113(in Chinese).
    [21] 余为, 薛海龙, 钱蒙, 等. 浸泡腐蚀对玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(6):1688-1695.

    YU W, XUE H L, QIAN M, et al. Influence of soak corrosion on flexural properties of glass fiber-hollow glass microsphere/epoxy syntactic foam material[J]. Acta Materiae Compositae Sinica,2015,32(6):1688-1695(in Chinese).
    [22] ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—19[S]. West Conshohocken: ASTM International, 2019.
    [23] 中国国家标准化管理委员会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [24] 中国国家标准化管理委员会. 泡沫塑料及橡胶表观密度的测定: GB/T 6343—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Cellular plastics and rubbers: Determination of apparent density: GB/T 6343—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [25] 中国国家标准化管理委员会. 非金属固体材料导热系数的测定热线法: GB/T 10297—2015[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Test method for thermal conductivity of nonmetal solid materials: Hot-wire method: GB/T 10297—2015[S]. Beijing: China Standards Press, 2016(in Chinese).
    [26] 中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rigid cellular plastics: Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27] 王洪志. 离子液体改性空心材料阻燃TPU的研究[D]. 青岛: 青岛科技大学, 2018.

    WANG H Z. Study on flame retardant thermoplastic polyurethane based on modified hollow materials with ionic liquid[D]. Qingdao: Qingdao University of Science & Technology, 2018(in Chinese).
    [28] 刘娟, 李青芳, 韩悦, 等. 磷/硅比值对硬质聚氨酯泡沫性能的影响[J]. 塑料, 2017, 46(2):54-57.

    LIU J, LI Q F, HAN Y, et al. Effect of the P/Si ratio on properties of rigid polyurethane foam[J]. Plastics,2017,46(2):54-57(in Chinese).
    [29] BIAN X C, TANG J H, LI Z M. Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite[J]. Journal of Applied Polymer Science,2008,109(3):1935-1943. doi: 10.1002/app.27786
    [30] CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science,2009,34(10):1068-1133. doi: 10.1016/j.progpolymsci.2009.06.002
    [31] YUAN Y, MA C, SHI Y Q, et al. Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound[J]. Materials Chemistry and Physics,2018,211:42-53. doi: 10.1016/j.matchemphys.2018.02.007
    [32] MODESTI M, LORENZETTI A, BESCO S, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams[J]. Polymer Degradation and Stability,2008,93(12):2166-2171. doi: 10.1016/j.polymdegradstab.2008.08.005
    [33] YUAN Y, YU B, SHI Y Q, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation[J]. Composites Part A: Applied Science and Manufacturing,2018,112:142-154. doi: 10.1016/j.compositesa.2018.05.028
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  608
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-01-13
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回