留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料

胡晓兰 刘文军 余荣禄 周川 李伟东 周玉敬 刘刚 益小苏

胡晓兰, 刘文军, 余荣禄, 等. 含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料[J]. 复合材料学报, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
引用本文: 胡晓兰, 刘文军, 余荣禄, 等. 含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料[J]. 复合材料学报, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
HU Xiaolan, LIU Wenjun, YU Ronglu, et al. Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
Citation: HU Xiaolan, LIU Wenjun, YU Ronglu, et al. Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001

含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料

doi: 10.13801/j.cnki.fhclxb.20200115.001
基金项目: 航空科学基金(2016ZF68011);福建省科技创新平台建设计划(2014H2006);厦门大学石墨烯工业技术研究院资助项目(2014I2005)
详细信息
    通讯作者:

    胡晓兰,博士,副教授,研究方向为高性能树脂基复合材料 E-mail:xlhu@xmu.edu.cn

  • 中图分类号: TB332

Phosphorus-containing polyaryletherketone-bismaleimide resin (PAEK-P-BMI) and carbon fiber/PAEK-P-BMI composites

  • 摘要: 为提高树脂传递模塑(RTM)复合材料的整体韧性,结合“离位”复合增韧技术和RTM制造技术,应用新型热塑性含磷聚芳醚酮(PAEK-P)对碳纤维/双马来酰亚胺树脂(CF/BMI)复合材料进行增韧改性,研究了PAEK-P-BMI复合树脂的流变性能、分相行为及PAEK-P对CF/BMI复合材料韧性的影响。结果表明,分子链的刚性结构使PAEK-P具有高的耐热性,玻璃化转变温度达到268.8℃,PAEK-P在BMI树脂中的溶解性较差,PAEK-P-BMI复合树脂凝胶时间和黏度急增拐点时间受PAEK-P含量的影响很小;PAEK-P-BMI复合树脂在110℃/300 min条件下未出现相分离,但在后期的高温固化过程形成了分相结构,并在CF/PAEK-P-BMI复合材料中保持了分相形貌;与CF/BMI复合材料相比,CF/PAEK-P-BMI复合材料的冲击后损伤投影面积降低了69%,冲击后压缩强度提高了16.6%,冲击凹坑深度减小了34.4%。

     

  • 图  1  含磷聚芳醚酮(PAEK-P)和酚酞聚芳醚酮(PAEK-C)的化学结构

    Figure  1.  Chemical structures of phosphorus-containing polyaryletherketone(PAEK-P) and polyether-ether ketone(PAEK-C)

    图  2  PAEK-P和PAEK-C的DSC曲线

    Figure  2.  DSC curves of PAEK-P and PAEK-C

    图  3  BMI树脂的黏度-温度曲线(a)及恒温110℃下黏度-时间曲线(b)

    Figure  3.  Viscosity-temperature curve of BMI resin (a) and viscosity-time curve of BMI resin at constant temperature of 110℃(b)

    图  4  不同PAEK-P含量(质量比)的PAEK-P-BMI复合树脂的凝胶特性曲线

    Figure  4.  Gel characteristic curves of PAEK-P-BMI resin with different PAEK-P contents (mass ratio)

    G'—Storage modulus; G''—Loss modulus

    图  5  恒温110℃下不同PAEK-P含量的PAEK-P-BMI复合树脂(a)及BMI树脂、3%PAEK-C-BMI复合树脂和3%PAEK-P-BMI复合树脂(b)的黏度曲线

    Figure  5.  Viscosity curves of PAEK-P-BMI composite resins with different PAEK-P contents(a) and BMI resin, 3%PAEK-C-BMI composite resin, 3%PAEK-P-BMI composite resin(b) at constant temperature of 110℃

    图  6  110℃时PAEK-P-BMI复合树脂的形貌演变

    Figure  6.  Morphological evolution of PAEK-P-BMI composite resin at 110℃((a) 110℃/2 min; (b) 110℃/6 min; (c) 110℃/60 min; (d) 110℃/300 min)

    图  7  PAEK-P-BMI复合树脂浇铸体的SEM图像(DMF刻蚀72 h)

    Figure  7.  SEM images of PAEK-P-BMI resin castings (DMF etching 72 h)

    图  8  碳纤维(CF)/PAEK-P-BMI复合材料的SEM图像

    Figure  8.  SEM images of carbon fiber(CF)/PAEK-P-BMI composites

    图  9  CF/BMI、CF/PAEK-P-BMI和CF/PAEK-C-BMI复合材料冲击前后C扫描图像

    Figure  9.  C-scan images of CF/BMI, CF/PAEK-P-BMI, CF/PAEK-C-BMI composites before and after impact

    表  1  PAEK-P和PAEK-C的溶解性能

    Table  1.   Solubility properties of PAEK-P and PAEK-C

    Thermoplastic resinTHFDMFBMI (110℃)
    PAEK-C Rapid dissolution Rapid dissolution Transparent
    PAEK-P Insoluble Slow dissolution Large amount of precipitation
    Notes: THF—Tetrahydrofuran; DMF—N,N-dimethyformamide; BMI—Bismaleimide resin.
    下载: 导出CSV

    表  2  PAEK-P-BMI复合树脂的凝胶特性

    Table  2.   Gel properties of PAEK-P-BMI composite resin

    Mass ratio of PAEK-P/%G' /PaG''/PaGel point modulus/PaGel point time/s
    1 0.438 0.80 95.48 3 910
    3 0.601 2.50 149.24 3 747
    5 1.390 3.59 108.85 3 477
    7 9.730 20.68 175.53 3 472
    下载: 导出CSV

    表  3  CF/BMI、CF/PAEK-P-BMI和CF/PAEK-C-BMI复合材料冲击后损伤情况及冲击后压缩强度

    Table  3.   Damage and compressive strength of CF/BMI, CF/PAEK-P-BMI and CF/PAEK-C-BMI composites after impact

    CompositeSurface density/(g·m−2)Pit depth/mmCompressive strength after impact/MPaDamage area/mm2
    CF/BMI 0 0.90 162.1 3 750
    CF/PAEK-P-BMI 11.4 0.59 189.0 1 156
    CF/PAEK-C-BMI 12.2 0.60 210.8 660
    下载: 导出CSV
  • [1] 益小苏, 李宏运. 航空液态成型复合材料关键技术研究[J]. 新材料产业, 2009(11):6-15. doi: 10.3969/j.issn.1008-892X.2009.11.003

    YI Xiaosu, LI Hongyun. Research on key technologies of aviation liquid forming composites[J]. Advanced Materials Industry,2009(11):6-15(in Chinese). doi: 10.3969/j.issn.1008-892X.2009.11.003
    [2] 李伟东, 刘刚, 安学锋, 等. <italic>Z</italic>向流动RTM工艺树脂的流动浸润行为[J]. 复合材料学报, 2013, 30(6):82-89. doi: 10.3969/j.issn.1000-3851.2013.06.012

    LI Weidong, LIU Gang, AN Xuefeng, et al. Investigation of resin flowing and infiltration behavior during <italic>Z</italic> direction flowing RTM process[J]. Acta Materiae Compositae Sinica,2013,30(6):82-89(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.012
    [3] 杨海冬, 曲春艳, 王德志, 等. 乙烯基橡胶增韧双马来酰亚胺树脂的研究[J]. 化学与粘合, 2014, 36(1):20-23.

    YANG Haidong, QU Chunyan, WANG Dezhi, et al. Study on toughening bismaleimide resin by vinyl rubber[J]. Chemistry and Adhesion,2014,36(1):20-23(in Chinese).
    [4] 王超, 黄玉东, 张斌, 等. 液体端羧基丁腈橡胶改性双马来酰亚胺结构胶粘剂(Ⅰ)双马来酰亚胺树脂及胶粘剂的合成[J]. 高分子材料科学与工程, 2003, 19(2):86-88. doi: 10.3321/j.issn:1000-7555.2003.02.021

    WANG Chao, HUANG Yudong, ZHANG Bin, et al. CTBN modified BMI construction adhesive (Ⅰ) synthesis of BMI and the adhesive[J]. Polymeric Materials Science <italic>&</italic> Engineering,2003,19(2):86-88(in Chinese). doi: 10.3321/j.issn:1000-7555.2003.02.021
    [5] 陈宇飞, 郭红缘, 耿成宝, 等. 聚醚醚酮和烯丙基化合物改性双马来酰亚胺复合材料微观结构及力学性能[J]. 复合材料学报, 2018, 35(11):3081-3087.

    CHEN Yufei, GUO Hongyuan, GENG Chengbao, et al. Microstructure and mechanical properties of bismaleimide composites modified with poly(etheretherketone) and allyl compounds[J]. Acta Materiae Compositae Sinica,2018,35(11):3081-3087(in Chinese).
    [6] BABKIN A V, ERDNI-GORYAEV E M, SOLOPCHENKO A V, et al. Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide[J]. Polymers for Advanced Technologies,2016,27(6):774-780. doi: 10.1002/pat.3711
    [7] LIU M, DUAN Y, WANG Y, et al. Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites[J]. Materials <italic>&</italic> Design,2014,53:466-474.
    [8] MANDHAKINI M, CHANDRAMOHAN A, JAYANTHI K, et al. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites[J]. Materials <italic>&</italic> Design,2014,64:706-713.
    [9] 肖杰, 顾轶卓, 李敏, 等. 多壁碳纳米管改性环氧树脂胶黏剂实验研究[J]. 复合材料学报, 2011, 28(3):20-26.

    XIAO Jie, GU Yizhuo, LI Min, et al. Experiment study on epoxy resin adhesive modified by multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2011,28(3):20-26(in Chinese).
    [10] 益小苏, 安学锋, 唐邦铭, 等. 一种提高层状复合材料韧性的方法: 中国, ZL01100981.0[P]. 2011-03-26.

    YI Xiaosu, AN Xuefeng, TANG Bangming, et al. A method for improving toughness of layered composite material: China, ZL01100981.0[P]. 2011-03-26(in Chinese).
    [11] 益小苏, 安学锋, 唐邦铭, 等. 一种增韧的复合材料层合板及其制备方法: 中国, CN1923506[P]. 2007-03-07.

    YI Xiaosu, AN Xuefeng, TANG Bangming, et al. A toughening composite laminate and its preparation: China, CN1923506[P]. 2007-03-07(in Chinese).
    [12] 益小苏, 许亚洪, 程群峰, 等. 层间韧化的碳纤维复合材料层压板的力学性能[J]. 材料研究学报, 2008, 22(4):337-346. doi: 10.3321/j.issn:1005-3093.2008.04.001

    YI Xiaosu, XU Yahong, CHENG Qunfeng, et al. Interlaminar toughness and characteristic morphology of laminated graphite composites interlaminar-toughened[J]. Chinese Journal of Materials Research,2008,22(4):337-346(in Chinese). doi: 10.3321/j.issn:1005-3093.2008.04.001
    [13] RATNA D, SIMON G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer,2001,42(21):8833-8839. doi: 10.1016/S0032-3861(01)00341-X
    [14] QIN H, MATHER P T, BAEK J B, et al. Modification of bisphenol: A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI)[J]. Polymer,2006,47(8):2813-2821. doi: 10.1016/j.polymer.2006.02.062
    [15] CHENG Q F, FANG Z P, XU Y H, et al. Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J]. Chinese Journal of Aeronautics,2009,22(1):87-96. doi: 10.1016/S1000-9361(08)60073-4
    [16] 石凤, 段跃新, 梁志勇, 等. RTM专用双马来酰亚胺树脂体系化学流变特性[J]. 复合材料学报, 2006, 23(1):56-62.

    SHI F, DUAN Y X, LIANG Z Y, et al. Rheological behavior of a bismaleimide resin system for RTM process[J]. Acta Materiae Compositae Sinica,2006,23(1):56-62(in Chinese).
    [17] YI X S, CHENG Q F, LIU Z Z. Preform-based toughening technology for RTMable high-temperature aerospace composites[J]. Science China Technological Sciences,2012,55(8):2255-2263. doi: 10.1007/s11431-012-4949-8
    [18] LIU P, QU C Y, WANG D Z, et al. High-performance bismaleimide resins with low cure temperature for resin transfer molding process[J]. High Performance Polymers,2017,29(3):298-304. doi: 10.1177/0954008316642278
    [19] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12.

    CHEN Xiangbao, ZHANG Baoyan, XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12(in Chinese).
    [20] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137M—17[S]. West Conshohocken: ASTM International, 2017.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  906
  • HTML全文浏览量:  280
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-18
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回