留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟

孙颖颖 周璐瑶 韩宇 崔柳

孙颖颖, 周璐瑶, 韩宇, 等. 气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟[J]. 复合材料学报, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004
引用本文: 孙颖颖, 周璐瑶, 韩宇, 等. 气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟[J]. 复合材料学报, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004
SUN Yingying, ZHOU Luyao, HAN Yu, et al. Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004
Citation: SUN Yingying, ZHOU Luyao, HAN Yu, et al. Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2482-2488. doi: 10.13801/j.cnki.fhclxb.20200111.004

气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟

doi: 10.13801/j.cnki.fhclxb.20200111.004
基金项目: 引进人才科研启动基金项目(YKJ201860;YKJ201815);国家自然科学基金(51806064;51776069);江苏省自然科学面上项目(18KJD480003);江苏海事学院科技类重点课题(2017KJZD-04)
详细信息
    通讯作者:

    孙颖颖,博士,讲师,研究方向为高分子复合材料热物性、微纳尺度导热、强化传热 E-mail:sunyingying@njit.edu.cn

  • 中图分类号: TB332

Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites

  • 摘要: 气泡和气隙严重影响环氧树脂基复合材料的导热性能,研究气泡和气隙对复合材料热导率的影响有助于提高导热模型的准确性,可为进一步优化环氧树脂基复合材料的导热性能提供指导方向。采用有限元方法建立一种含气泡、气隙的六方氮化硼(h-BN) /环氧树脂复合材料单胞模型,分析气泡、气隙的尺寸和数量对复合材料导热性能的影响。通过与其他模型、实验数据的对比对模型的有效性进行了验证。结果表明,随着气泡尺寸和数量的增加,h-BN/环氧树脂复合材料热导率逐渐下降,且热导率随气泡尺寸的变化曲线存在转折点,直径大于单胞厚度的气泡对复合材料热导率的影响较大。随着气隙直径和厚度的增加,h-BN/环氧树脂复合材料热导率先缓慢后快速减小、最后呈直线趋势下降;随着气隙数量的增加,h-BN/环氧树脂复合材料热导率逐渐下降,且相较于基材中的气隙,位于填料与基材界面处的气隙对热导率的减弱更显著。

     

  • 图  1  六方氮化硼(h-BN)/环氧树脂复合材料单胞模型(基材中含一个气泡(直径Db=2 μm),界面处存在一个气隙(Dg=19 μm、厚度δg=0.1 μm))

    Figure  1.  Representative unit cell model of hexagonal boron nitride (h-BN)/epoxy composites (Containg one air bubble in the matrix (diameter Db=1 μm) and one air gap at the interface (diameter Dg=19 μm, thickness δg=0.1 μm))

    图  2  h-BN/环氧树脂复合材料有限元模型及数值求解后的温度分布图

    Figure  2.  Numerical model of h-BN/epoxy composites and temperature distribution after numerical solution

    图  3  h-BN/环氧树脂复合材料热导率数值计算结果与其他模型、实验结果的对比

    Figure  3.  Comparison of thermal conductivity of h-BN/epoxy composites among numerical results, other models and experimental results

    图  4  含一个气泡h-BN/环氧树脂复合材料温度和热流分布图(Db=2 μm)

    Figure  4.  Diagrams of temperature and directional heat flux distribution of h-BN/epoxy composites containing one air bubble(Db=2 μm)

    图  5  模型计算h-BN/环氧树脂复合材料热导率随着气泡直径、气泡数量的变化(实线表示气泡直径的影响、短划线表示气泡数量的影响)

    Figure  5.  Calculated thermal conductivity of h-BN/epoxy composites changing with bubble diameter and bubble number (Solid lines are the influence of bubble diameter, while dashed lines are the influence of bubble number)

    图  6  含一个气隙h-BN/环氧树脂复合材料温度和热流分布图(Dg=19 μm、 δg=0.1 μm)

    Figure  6.  Diagrams of temperature and directional heat flux distribution of h-BN/epoxy composites containing one air gap (Dg=19 μm, δg=0.1 μm)

    图  7  模型计算h-BN/环氧树脂复合材料热导率随着气隙直径、厚度、数量的变化(实线表示气泡直径的影响、点虚线表示气泡厚度的影响、短划线表示气泡数量的影响)

    Figure  7.  Calculated thermal conductivity of h-BN/epoxy composites changing with gas diameter, thickness and number (Solid lines are the influence of gas diameter, dotted lines are that of gas thickness, while dashed lines are that of gas number)

  • [1] BIGG D M. Thermally conductive polymer compositions[J]. Polymer Composites,1986,7(3):125-140. doi: 10.1002/pc.750070302
    [2] ZHOU W, QI S, LI H, et al. Study on insulating thermal conductive BN/HDPE composites[J]. Thermochimica Acta,2007,452(1):36-42. doi: 10.1016/j.tca.2006.10.018
    [3] DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science,2014,39(4):627-655. doi: 10.1016/j.progpolymsci.2013.07.007
    [4] LI Q, GUO Y, LI W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials,2014,26(15):4459-4465. doi: 10.1021/cm501473t
    [5] SUN Y, CHEN L, LIN J, et al. Thermal conductivity of epoxy composites filled by thermally reduced graphite oxide with different reduction degree[J]. Journal of Composite Materials,2017,51(12):1743-1752. doi: 10.1177/0021998317696137
    [6] KIM K, KIM J. Fabrication of thermally conductive compo-site with surface modified boron nitride by epoxy wetting method[J]. Ceramics International,2014,40(4):5181-5189. doi: 10.1016/j.ceramint.2013.10.076
    [7] LIN F, BHATIA G S, FORD J D. Thermal conductivities of powder-filled epoxy resins[J]. Journal of Applied Polymer Science,2010,49(11):1901-1908.
    [8] YANG S Y, LIN W N, HUANG Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011,49(3):793-803. doi: 10.1016/j.carbon.2010.10.014
    [9] ZHANG T, SUN J, REN L, et al. Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength[J]. Composites Part A: Applied Science and Manufacturing,2019,121:92-99. doi: 10.1016/j.compositesa.2019.03.017
    [10] CHEN L, SUN Y Y, XU H F, et al. Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride[J]. Compo-sites Science & Technology,2016,122:42-49.
    [11] CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based compo-sites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150
    [12] 张宁. 轻质高强隔热复合材料制备及隔热性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    ZHANG Ning. The preparation and thermal insulation property study of a lightweight high-strength composite[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [13] 管胜男, 陈照峰, 马昊, 等. 铝箔气泡复合材料的制备及隔热性能研究[J]. 南京航空航天大学学报, 2018, 50(1):53-60.

    GUAN Shengnan, CHEN Zhaofeng, MA Hao, et al. Preparation of aluminum foil/bubble composite and its property on thermal insulation[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(1):53-60(in Chinese).
    [14] TANIMOTO M, YAMAGATA T, MIYATA K, et al. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity[J]. ACS Applied Materials& Interfaces,2013,5(10):4374-4382.
    [15] YU C, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2017,98:25-31. doi: 10.1016/j.compositesa.2017.03.012
    [16] NIELSEN L E. Thermal conductivity of particulate-filled polymers[J]. Journal of Applied Polymer Science,2010,17(12):3819-3820.
    [17] HATTA H. Thermal diffusivities of composites with various types of filler[J]. Journal of Composite Materials,1992,26(5):612-625. doi: 10.1177/002199839202600501
    [18] CHEN L, SUN Y, LIN J, ET al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler[J]. International Journal of Heat and Mass Transfer,2015,81:457-464. doi: 10.1016/j.ijheatmasstransfer.2014.10.051
    [19] NAN C W, LIU G, LIN Y, et al. Interface effect on thermal conductivity of carbon nanotube composites[J]. Applied Physics Letters,2004,85(16):3549-3551. doi: 10.1063/1.1808874
    [20] GU J, ZHANG Q, DANG J, et al. Thermal conductivity epoxy resin composites filled with boron nitride[J]. Polymers for Advanced Technologies,2012,23(6):1025-1028. doi: 10.1002/pat.2063
    [21] ZHANG Y F, ZHAO Y H, BAI S L, et al. Numerical simulation of thermal conductivity of graphene filled polymer composites[J]. Composites Part B: Engineering,2016,106:324-331. doi: 10.1016/j.compositesb.2016.09.052
    [22] KIM K, KIM J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field[J]. International Journal of Thermal Sciences,2016,100:29-36. doi: 10.1016/j.ijthermalsci.2015.09.013
  • 加载中
图(7)
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  373
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 录用日期:  2019-12-31
  • 网络出版日期:  2020-01-13
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回