留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及其交互作用机制

肖华强 赵思皓

肖华强, 赵思皓. Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及其交互作用机制[J]. 复合材料学报, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003
引用本文: 肖华强, 赵思皓. Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及其交互作用机制[J]. 复合材料学报, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003
XIAO Huaqiang, ZHAO Sihao. Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003
Citation: XIAO Huaqiang, ZHAO Sihao. Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2501-2511. doi: 10.13801/j.cnki.fhclxb.20200111.003

Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及其交互作用机制

doi: 10.13801/j.cnki.fhclxb.20200111.003
基金项目: 国家自然科学基金(51605106);贵州省联合基金(20157219);广东省金属新材料制备与成形重点实验室开放基金(GJ201608)
详细信息
    通讯作者:

    肖华强,博士,副教授,硕士生导师,研究方向为金属间化合物基复合材料 E-mail:xhq-314@163.com

  • 中图分类号: TG172

Corrosion-wear behavior and synergy mechanism of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum

  • 摘要: 通过对比分析Ti3AlC2-Al2O3/TiAl3复合材料在纯腐蚀、纯磨损及熔蚀-磨损三种条件下的材料流失特征,研究了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损行为及熔蚀与磨损的交互作用机制。结果表明,Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的熔蚀-磨损体积损失比H13钢的体积损失低了两个数量级,随着载荷和转速的上升,Ti3AlC2-Al2O3/TiAl3复合材料的磨损由磨粒磨损逐渐向黏着磨损转变。Ti3AlC2-Al2O3/TiAl3复合材料的熔蚀、磨损交互作用率的最大值为47.5%,在低载荷或低转速条件下由于铝熔体的润滑作用,Ti3AlC2-Al2O3/TiAl3复合材料甚至表现出负的交互作用。这一方面是由于Ti3AlC2-Al2O3/TiAl3复合材料在Al液中腐蚀时不生成其它界面产物,而仅为极少量Ti元素的溶解;另一方面则是由于TiAl3基体与Al2O3二者所形成的空间网络状结构改善了Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的耐磨损性能。

     

  • 图  1  Ti3AlC2-Al2O3/TiAl3复合材料的SEM图像

    Figure  1.  SEM image of Ti3AlC2-Al2O3/TiAl3 composite

    图  2  高温熔蚀-磨损试验机实物图(a)及示意图(b)

    Figure  2.  High temperature corrosion-wear test apparatus (a) and schematic diagram(b)

    图  3  Ti3AlC2-Al2O3/TiAl3复合材料在750℃Al液中腐蚀8 h后的表面形貌

    Figure  3.  Surface morphology of Ti3AlC2-Al2O3/TiAl3 composite after being corroded in aluminum liquid at 750℃ for 8 h

    图  4  Ti3AlC2-Al2O3/TiAl3复合材料在750℃Al液中腐蚀8 h后的界面形貌及元素分析

    Figure  4.  Interface morphology and element analysis of Ti3AlC2-Al2O3/TiAl3 composite after being corroded in aluminum liquid at 750℃ for 8 h

    图  5  Ti3AlC2-Al2O3/TiAl3复合材料在750℃Al液中腐蚀8 h后腐蚀界面的XRD图谱

    Figure  5.  XRD spectra of corroded interface of Ti3AlC2-Al2O3/TiAl3 composite after being corroded in aluminum liquid at 750℃ for 8 h

    图  6  Ti3AlC2-Al2O3/TiAl3复合材料在Al液中的腐蚀失重及腐蚀速率

    Figure  6.  Mass loss and corrosion rate of Ti3AlC2-Al2O3/TiAl3 composite in molten aluminum

    图  7  Ti3AlC2-Al2O3/TiAl3复合材料在干摩擦磨损及熔蚀-磨损下的摩擦曲线

    Figure  7.  Wear curves of Ti3AlC2-Al2O3/TiAl3 composite under dry sliding wear and corrosion-wear

    图  8  Ti3AlC2-Al2O3/TiAl3复合材料干摩擦磨损及熔蚀-磨损的磨痕形貌

    Figure  8.  Wear tracks morphologies of Ti3AlC2-Al2O3/TiAl3 composite under dry sliding wear and corrosion-wear

    图  9  不同转速下Ti3AlC2-Al2O3/TiAl3复合材料熔蚀-磨损表面形貌

    Figure  9.  SEM images of corrosion-wear surfaces of Ti3AlC2-Al2O3/TiAl3 composite under different velocities

    图  10  不同载荷下Ti3AlC2-Al2O3/TiAl3复合材料熔蚀-磨损表面的SEM图像

    Figure  10.  SEM images of corrosion-wear surfaces of Ti3AlC2-Al2O3/TiAl3 composite under different loads

    图  11  Ti3AlC2-Al2O3/TiAl3复合材料熔蚀-磨损表面的XRD图谱

    Figure  11.  XRD pattern of corrosion-wear surface of Ti3AlC2-Al2O3/TiAl3 composite

    图  12  Ti3AlC2-Al2O3/TiAl3复合材料在750℃Al液中磨损量和磨损速率随转速(a)及载荷(b)的变化

    Figure  12.  Effects of load (a) and velocity (b) on the volume loss and wear rate of Ti3AlC2-Al2O3/TiAl3 composite in aluminum liquid at 750℃

    图  13  H13钢(a)及Ti3AlC2-Al2O3/TiAl3复合材料(b)在750℃Al液中的熔蚀-磨损交互作用率

    Figure  13.  Corrosion-wear synergy ratio of H13 tool steel (a) and TiAl3/Ti3AlC2/Al2O3 composite (b) in aluminum liquid at 750℃

    表  1  Ti3AlC2-Al2O3/TiAl3复合材料及Si3N4陶瓷配副的基本性能

    Table  1.   Properties of Ti3AlC2-Al2O3/TiAl3 composite and Si3N4 ceramic

    MaterialDensity/ (g·cm−3)Vickers hardness/ GPaThree-point bending
    strength/MPa
    Fracture toughness/ (MPa·m−1/2)
    Ti3AlC2-
    Al2O3/TiAl3
    3.8 8.4 658.9 7.9
    Si3N4 3.2 16 700 4.5
    下载: 导出CSV
  • [1] ZHANG X M, CHEN W P. Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys[J]. Transactions of Nonferrous Metals Society of China,2015,25(6):1715-1731. doi: 10.1016/S1003-6326(15)63777-3
    [2] KIM H J, YOON B H, LEE C H. Sliding wear performance in molten Zn–Al bath of cobalt-based overlayers produced by plasma-transferred arc weld-surfacing[J]. Wear,2003,254(5–6):408-414.
    [3] ZHU Y L, SCHWAM D, WALLACE J F. et al. Evaluation of soldering, washout and thermal fatigue resistance of advanced metal materials for aluminum die-casting dies[J]. Materials Science and Engineering: A,2004,379(1):420-431.
    [4] XU G P, WANG K, DONG X P, et al. Multiscale corrosion-resistance mechanisms of novel ferrous alloys in dynamic aluminum melts[J]. Corrosion Science, Express,2019:108276.
    [5] ZHANG X M, LI X, CHEN W P. Interfacial reactions of duplex stainless steels with molten aluminum[J]. Surface and Interface Analysis,2015,47(6):648-656. doi: 10.1002/sia.5760
    [6] BALLOY D, TISSIER J C, GIORGI M L, et al. Corrosion mechanisms of steel and cast iron by molten aluminum[J]. Metallurgical & Materials Transactions A,2010,41(9):2366-2376.
    [7] JAMES G, WILLIAM L, PETERS K M. Development and application of refractory materials for molten aluminum applications[J]. International Journal of Applied Ceramic Technology,2008,5(3):265-277. doi: 10.1111/j.1744-7402.2008.02213.x
    [8] CASTRO M N I, ROBLES J M A, HERNANDEZ D A C, et al. Chemical interaction between Ba-celsian (BaAl2Si2O8) and molten aluminum[J]. Ceramic International,2016,42(2):3491-3496. doi: 10.1016/j.ceramint.2015.10.152
    [9] CASTRO M N I, ROBLES J M A, HERNANDEZ D A C, et al. Chemical interaction between SrAl2Si2O8 and molten aluminum[J]. Journal of the European Ceramic Society,2015,35(15):4287-4292. doi: 10.1016/j.jeurceramsoc.2015.07.022
    [10] ADABIFIROOZJAEI E, KOSHY P, SORRELL C C. Effects of V2O5, addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy[J]. Journal of the European Ceramic Society,2012,32(8):1463-1471. doi: 10.1016/j.jeurceramsoc.2012.01.023
    [11] ADABIFIROOZJAEI E, KOSHY P, SORRELL C C. Effects of AlPO4 addition on the corrosion resistance of andalusite-based low-cement castables with molten Al-alloy[J]. Journal of the European Ceramic Society,2013,33(6):1067-1075. doi: 10.1016/j.jeurceramsoc.2012.11.005
    [12] VOURLIAS G, PISTOFIDIS N, PSYLLAKI P, et al. Plasma-sprayed YSZ coatings: Microstructural features and resistance to molten metals[J]. Journal of Alloys and Compounds,2009(483):382-385.
    [13] 罗哲民, 倪东惠, 易耀勇, 等. Ti/CrN、Ti/TiN/CrN镀层对8418热作模具钢耐铝合金熔体腐蚀性能的影响[J]. 腐蚀与防护, 2016, 37(5):388-391. doi: 10.11973/fsyfh-201605009

    LUO Zheming, NI Donghui, YI Yaoyong, et al. Effect of Ti/CrN and Ti/TiN/CrN coatings on the corrosion resistance of 8418 hot-working steel against Al alloy melt[J]. Corrosion & Protection,2016,37(5):388-391(in Chinese). doi: 10.11973/fsyfh-201605009
    [14] JOSHI V, KULKARNI K, SHIVPURI R, et al. Dissolution and soldering behavior of nitride hot working steel with multilayer LAFAD PVD coatings[J]. Surface and Coatings Technology,2001,146-147:338-343. doi: 10.1016/S0257-8972(01)01426-8
    [15] 陈维平, 吴晶, 罗洪峰. 一种砝码加载环块式腐蚀磨损试验机: 中国, CN101975708B[P]. 2012-05-09.

    CHEN Weiping, WU Jing, LUO Hongfeng. Weight loading ring-piece type corrosive wear tester: China, CN101975708B[P]. 2012-05-09(in Chinese).
    [16] 陈维平, 吴晶, 罗洪峰. 新型高温金属腐蚀-磨损试验机及其应用[J]. 特种铸造及有色合金, 2012, 32(10):883-885.

    CHEN Weiping, WU Jing, LUO Hongfeng. A new high temperature test rig for corrosion-wear in molten metal and its application[J]. Special Casting & Nonferrous Alloys,2012,32(10):883-885(in Chinese).
    [17] 陈维平, 方思聪, 曾勇, 等. 钨和H13钢的耐Al液腐蚀−磨损性能与机理[J]. 中国有色金属学报, 2013, 23(11):3127-3134.

    CHEN Weiping, FANG Sicong, ZENG Yong, et al. Corrosion-wear resistant performance and mechanisms of tungsten and H13 steel in molten aluminum[J]. The Chinese Journal of Nonferrous Metals,2013,23(11):3127-3134(in Chinese).
    [18] 吴晶. 耐Al液腐蚀—磨损金属材料的筛选及其试验设备的研制[D]. 广州: 华南理工大学, 2012.WU Jing. The screening experiments of corrosion-wear resistant metal materials in molten aluminum and device development[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
    [19] 肖华强, 陈维平. H13钢在Al液中的熔蚀-磨损行为与交互作用机理[J]. 中国有色金属学报, 2017, 27(1):89-96.

    XIAO Huaqiang, CHEN Weiping. Corrosion-wear behavior and synergy mechanism of H13 tool steel in molten aluminum[J]. The Chinese Journal of Nonferrous Metals,2017,27(1):89-96(in Chinese).
    [20] CHEN W P, XIAO H Q, FU Z Q, et al. Reactive hot pressing and mechanical properties of TiAl3-Ti3AlC2-Al2O3 in situ composite[J]. Materials and Design,2013,49:929-934. doi: 10.1016/j.matdes.2013.02.053
    [21] 李晓梅, 肖华强, 曾勇, 等. 新型Ti3AlC2-Al2O3/ TiAl3复合材料的组织结构与性能[J]. 复合材料学报, 2015, 32(1):108-116.

    LI Xiaomei, XIAO Huaqiang, ZENG Yong, et al. Microstructure and properties of new type Ti3AlC2-Al2O3/TiAl3 composites[J]. Acta Materiae Compositae Sinica,2015,32(1):108-116(in Chinese).
    [22] XIAO H Q, CHEN W P, LIU Z. Corrosion resistance of 91W-6Ni-3Fe refractory metal, TiAl compound and iron based alloys in molten aluminum[J]. Transactions of Nonferrous Metals Society of China,2012,22(9):2320-2326. doi: 10.1016/S1003-6326(11)61466-0
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  770
  • HTML全文浏览量:  322
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 录用日期:  2020-01-05
  • 网络出版日期:  2020-01-13
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回