留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环对CFRP-烧结粘土砖界面粘结性能影响

靳文强 赵建昌 王琦 郭乐乐 聂丹

靳文强, 赵建昌, 王琦, 等. 冻融循环对CFRP-烧结粘土砖界面粘结性能影响[J]. 复合材料学报, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
引用本文: 靳文强, 赵建昌, 王琦, 等. 冻融循环对CFRP-烧结粘土砖界面粘结性能影响[J]. 复合材料学报, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002
Citation: JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002

冻融循环对CFRP-烧结粘土砖界面粘结性能影响

doi: 10.13801/j.cnki.fhclxb.20200111.002
基金项目: 甘肃省教育厅项目(2016A-017)
详细信息
    通讯作者:

    赵建昌,博士,教授,博士生导师,研究方向为工程结构加固 E-mail:13609382011@163.com

  • 中图分类号: TB332

Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick

  • 摘要: 为考察冻融循环对碳纤维增强聚合物复合材料(CFRP)-烧结粘土砖界面粘结性能的影响,通过模拟自然冻融环境,在试件经过不同次数的冻融循环后对其进行单面剪切试验。结果表明:在冻融循环作用下,CFRP-烧结粘土砖试件界面粘结性能发生了显著的退化,即随着冻融循环次数的增加,界面承载力和剪应力不断降低;界面剪应力在不同冻融次数下的分布具有相似性,均表现为随着荷载的增加剪应力逐渐由加载端向自由端传递,在传递过程中,有效传递长度变化不显著。在已有界面理论的基础上,根据试验提出了考虑冻融循环时间的界面粘结-滑移模型,通过对比分析,该模型能够很好地反映冻融循环作用下界面粘结性能退化规律。

     

  • 图  1  单剪试验试件

    Figure  1.  Single shear specimens

    图  2  CFRP-粘土砖试件示意图

    Figure  2.  Diagram of CFRP-clay bricks specimen

    图  3  CFRP-粘土砖试件纵向拉伸试验系统

    Figure  3.  Longitudinal tensile test system for CFRP-brick specimens

    图  4  不同冻融循环作用下CFRP-烧结粘土砖界面破坏情况

    Figure  4.  Interface failure modes of CFRP-sintered clay brick under different freeze-thaw cycles

    图  5  不同冻融循环作用下粘土砖孔隙度变化曲线

    Figure  5.  Change curve of clay brick porosity under different freezing-thawing cycles

    图  6  不同冻融循环作用下粘土砖的弛豫时间T2谱分布

    Figure  6.  Relaxztion time T2 distribution of clay bricks under different freezing-thawing cycles

    图  7  CFRP-粘土砖的界面承载力曲线

    Figure  7.  Interfacial capacity curves of CFRP-clay bricks

    图  8  CFRP-粘土砖界面平均粘结强度曲线

    Figure  8.  Average bonding strength curves of CFRP-clay brick interface

    图  9  CFRP-粘土砖界面单元体剪应力分布

    Figure  9.  Shear stress distribution of CFRP-clay brick interface

    图  10  不同冻融循环作用下CFRP-粘土砖界面剪应力分布

    Figure  10.  Shear stress distribution of CFRP-clay brick under different freeze-thaw cycles

    图  11  几种典型粘结-滑移关系模型曲线

    Figure  11.  Typical bond-slip relationship curves of CFRP-clay brick interface

    图  12  CFRP-粘土砖界面粘结-滑移关系

    Figure  12.  Bond-slip relationship curves of CFRP-clay brick interface

    表  1  碳纤维增强聚合物复合材料(CFRP)的性能

    Table  1.   Properties of carbon fiber reinforced polymer(CFRP)

    SampleTensile
    strength/MPa
    Modulus/
    GPa
    Elongation/
    %
    Thickness/
    mm
    CFRP ≥3 500 220 1.458 0.111
    下载: 导出CSV

    表  2  粘结树脂的性能

    Table  2.   Properties of impregnation resin

    Tensile shear strength/MPaTensile strength/GPaCompressive strength/MPaBending strength/MPaPositive tensile bond strength/MPaModulus/MPaElongation/%
    24.2940.1273.6272.954.442 605.72.45
    下载: 导出CSV

    表  3  CFRP-粘土砖单剪试验试件参数

    Table  3.   Specimen parameters of CFRP-clay brick specimens for single shear test

    CFRP size(Length×width)/mmNumber of CFRP-clay brick specimen
    0 cycle20 cycles40 cycles60 cycles80 cycles
    80×50 5 5 5 5 5
    100×80 5 5 5 5 5
    80×80 5 5 5 5 5
    100×80 5 5 5 5 5
    80×100 5 5 5 5 5
    100×100 5 5 5 5 5
    下载: 导出CSV

    表  4  CFRP-粘土砖界面承载力平均值和降低幅度

    Table  4.   Average interfacial bearing capacity and reduction of CFRP-brick specimens

    CFRP size(Length×width)/mmInterfacial baring capacity/kNDecrease of bearing capacity/%
    0 cycle20 cycles40 cycles60 cycles80 cycles0 cycle20 cycles40 cycles60 cycles80 cycles
    80×50 7.63 7.52 6.85 5.93 5.34 1.44 10.22 22.28 30.01
    100×50 7.95 7.88 7.07 6.95 6.43 0.88 11.07 12.58 19.12
    120×50 8.12 8.15 7.26 7.06 6.65 –0.37 10.59 13.05 18.10
    80×80 12.40 12.00 11.40 11.00 10.30 3.23 8.06 11.29 16.94
    100×80 13.00 12.80 12.30 11.60 10.50 1.54 5.38 10.77 19.23
    120×80 13.50 13.20 12.50 11.70 11.00 2.22 7.41 13.33 18.52
    下载: 导出CSV
  • [1] SATO Y, KIMURA K, KOBATAKE Y. Bond behavior between CFRP sheet and concrete (Part 1)[J]. Journal of Structural and Construction Engineering,1997,500:75-82.
    [2] 邓宗才, 牛翠兵, 杜修力, 等. FRP加固混凝土结构耐久性研究[J]. 北京工业大学学报, 2006, 32(2):133-137.

    DENG Zongcai, NIU Cuibing, DU Xiuli, et al. Durability of FRP strengthened concrete structure[J]. Journal of Beijing University of Technology,2006,32(2):133-137(in Chinese).
    [3] 滕锦光, 陈建飞, SMITH S T, 等. FRP加固混凝土结构[M]. 北京: 中国建筑工业出版社, 2004.

    TENG Jinguang, CHEN Jianfei, SMITH S T, et al. FRP reinforced concrete structure[M]. Beijing: China Architecture & Building Press, 2004(in Chinese).
    [4] 冯鹏, 陆新征, 叶列平. 纤维增强复合材料建设工程应用技术[M]. 北京: 中国建筑工业出版社, 2009.

    FENG Peng, LU Xinzheng, YE Lieping. Infrastructure application of FRP composites[M]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [5] PETERSEN R B, MASIA M J, SERACINO R. In-plane shear behavior of masonry panels strengthened with NSM CFRP strips Ⅱ: Finite-element model[J]. Journal of Composites for Construction,2010,14(6):764-774. doi: 10.1061/(ASCE)CC.1943-5614.0000137
    [6] MAHINI S. S. Smeared crack material modeling for the nonlinear analysis of CFRP-strengthened historical brick vaults with adobe piers[J]. Construction and Building Materials,2015,74:201-218. doi: 10.1016/j.conbuildmat.2014.10.033
    [7] 谷倩, 彭波, 刘卫国, 等. 碳纤维布抗震加固开门窗洞口砌体墙片的试验研究与受剪承载力分析[J]. 建筑结构学报, 2007, 28(1):80-88. doi: 10.3321/j.issn:1000-6869.2007.01.012

    GU Qian, PENG Bo, LIU Weiguo, et al. Experimental investigations and analysis of shear capacity ofmasonry wallswith window and door openings reinforced with CFRP sheets[J]. Journal of Building Structures,2007,28(1):80-88(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.01.012
    [8] 郭樟根, 刘佳亮, 孙伟民, 等. FRP加固砌体结构的研究与应用[J]. 南京工业大学学报(自然科学版), 2008(1):105-110.

    GUO Zhanggen, LIU Jialiang, SUN Weimin, et al. Research and application of FRP reinforced masonry structures[J]. Journal of Nanjing University of Technology(Natural Science Edition),2008(1):105-110(in Chinese).
    [9] 王作虎, 杨文雄, 刘杜. FRP布加固砌体结构界面粘结性能的研究进展[J]. 玻璃钢/复合材料, 2018(1):103-107. doi: 10.3969/j.issn.1003-0999.2018.01.017

    WANG Zuohu, YANG Wenxiong, LIU Du. Research progress on interface bonding properties ofmasonry structures strengthened by FRP sheets[J]. Fiber Reinforced Plastics/Composites,2018(1):103-107(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.01.017
    [10] 宦文娟, 张云升, 刘国建, 等. 冻融环境下黏土红砖的性能劣化规律与微结构演化[J]. 东南大学学报, 2014, 44(2):401-405.

    HUAN Wenjuan, ZHANG Yunsheng, LIU Guojian, et al. Performance deterioration and microstructure evolution ofclay brick submitted to freeze-thaw cycles[J]. Journal of Southeast University(Natural Science Edition),2014,44(2):401-405(in Chinese).
    [11] 王亮, 詹予忠, 沈国鹏, 等. 粘土砖的腐蚀劣化机理[J]. 四川建筑科学研究, 2008, 34(1):142-145. doi: 10.3969/j.issn.1008-1933.2008.01.041

    WANG Liang, ZHAN Yuzhong, SHEN Guopeng, et al. The weathering and deteriorating mechanism of clay brick[J]. Sichuan Building Science,2008,34(1):142-145(in Chinese). doi: 10.3969/j.issn.1008-1933.2008.01.041
    [12] 童丽萍, 雷小娟. 黄河淤泥烧结多孔砖抗冻性能研究[J]. 新型建筑材料, 2008, 35(10):23-26. doi: 10.3969/j.issn.1001-702X.2008.10.008

    TONG Liping, LEI Xiaojuan. Study on frost resistance of Yellow River silt sintered cellular brick[J]. New Building Materials,2008,35(10):23-26(in Chinese). doi: 10.3969/j.issn.1001-702X.2008.10.008
    [13] 中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146—2003[S]. 北京: 中国计划出版社, 2007.

    China Association for Engineering Construction Standardization. Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate: CECS 146—2003[S]. Beijing: China Planning Press, 2007(in Chinese).
    [14] 中国国家标准化管理委员会. 砌墙砖试验方法: GB/T 2542—2012[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test methods for wall bricks: GB/T 2542—2012[S]. Beijing: China Standards Press, 2013(in Chinese).
    [15] 王吉忠, 杨俊龙, 崔文佳. 盐溶液干湿循环对 CFRP-混凝土界面粘结性能影响[J]. 复合材料学报, 2018, 35(8):2055-2064.

    WANG Jizhong, YANG Junlong, CUI Wenjia. Effect of wet and dry cycles in salt solution on the interfacial bonding property of CFRP-concrete[J]. Acta Materiae Compositae Sinica,2018,35(8):2055-2064(in Chinese).
    [16] XU T, HE Z J, TANG C A, et al. Finite element analysis of width effect in interface debonding of FRP plate bonded to concrete[J]. Finite Elements in Analysis <italic>&</italic> Design,2015,93:30-41.
    [17] ZHENG X H, HUANG P Y, GUO X Y, et al. Experimental study on bond-slip constitutive relation between CFL and concrete[J]. Applied Mechanics <italic>&</italic> Materials,2013,302:359-364.
    [18] 廖志刚, 姚谏, 汪光满. 表面粘贴FRP加固混凝土单剪粘结试件的拉剪破坏[J]. 科技通报, 2010, 26(6):919-925. doi: 10.3969/j.issn.1001-7119.2010.06.024

    LIAO Zhigang, YAO Jian, WANG Guangman. Analysis of tension-shear failure on externally bonded FRP single shear test[J]. Bulletin of Science and Technology,2010,26(6):919-925(in Chinese). doi: 10.3969/j.issn.1001-7119.2010.06.024
    [19] NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal,2001,98(3):359-367.
    [20] YUN Y, WU Y F. Durability of CFRP-concrete joints under freeze-thaw cycling[J]. Cold Regions Science and Technology,2011,65(3):401-412. doi: 10.1016/j.coldregions.2010.11.008
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  256
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-20
  • 网络出版日期:  2020-01-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回