留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料货舱地板立柱压溃响应试验

汪洋 吴志斌 刘富

汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验[J]. 复合材料学报, 2020, 37(9): 2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001
引用本文: 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验[J]. 复合材料学报, 2020, 37(9): 2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001
WANG Yang, WU Zhibin, LIU Fu. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001
Citation: WANG Yang, WU Zhibin, LIU Fu. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200-2206. doi: 10.13801/j.cnki.fhclxb.20200111.001

复合材料货舱地板立柱压溃响应试验

doi: 10.13801/j.cnki.fhclxb.20200111.001
详细信息
    通讯作者:

    汪洋,硕士,高级工程师,研究方向为冲击动力学及复合材料结构设计 E-mail:wangyang3@comac.cc

  • 中图分类号: V216.1+1;V216.2+3

Crush experiment of composite cargo floor stanchions

  • 摘要: 复合材料已经在民用飞机结构上得到广泛应用,并逐渐应用到主承力结构中,复合材料的脆性特点给飞机的适坠性设计和评估提出了新的挑战。复合材料机身货舱地板支撑立柱作为坠撞过程中的重要吸能元件,对机身结构抗坠撞性能有重要影响。复合材料货舱地板支撑立柱在压溃失效模式下吸收的能量明显多于整体弯曲失效模式。根据民用飞机复合材料货舱地板立柱的设计需求,对不同试件触发模式、高度、截面形式、截面面积等设计参数变化的T700GC碳纤维/环氧树脂复合材料立柱开展准静态和动态压溃试验,得到立柱吸能特性的关键影响参数和设计因子。

     

  • 图  1  典型复合材料立柱压溃载荷-位移曲线

    Figure  1.  Typical load-displacement curve of composite crush element

    图  2  试验装置

    Figure  2.  Experimental setup

    图  3  T700GC碳纤维/环氧树脂复合材料立柱示意图和特征尺寸标示图

    Figure  3.  Diagram and characteristic dimension of woven T700GC carbon fiber/epoxy composite stanchions

    图  4  T700GC碳纤维/环氧树脂复合材料立柱截面示意图

    Figure  4.  Plan view of woven T700GC carbon fiber/epoxy composite stanchions

    图  5  试件触发模式示意图

    Figure  5.  Trigger configuration of tested specimens

    图  6  T700GC碳纤维/环氧树脂复合材料立柱准静态和动态加载变形

    Figure  6.  Post-test images of woven T700GC carbon fiber/epoxy composite stanchions for static and dynamic tests

    图  7  T700GC碳纤维/环氧树脂复合材料立柱准静态和动态加载载荷-位移曲线

    Figure  7.  Load vs. displacement curves of woven T700GC carbon fiber/epoxy composite stanchions for static and dynamic tests

    图  8  削尖和三削尖触发的T700GC碳纤维/环氧树脂复合材料立柱试件变形

    Figure  8.  Post-test images of woven T700GC carbon fiber/epoxy composite stanchions for steeple and three tips trigger configurations

    图  9  波纹型T700GC碳纤维/环氧树脂复合材料立柱变形

    Figure  9.  Post-test images for waved type woven T700GC carbon fiber/epoxy composite stanchions

    图  10  C型和波纹型T700GC碳纤维/环氧树脂复合材料立柱压溃试验载荷-位移曲线比较

    Figure  10.  Comparison of load-displacement curves for C type and waved type woven T700GC carbon fiber/epoxy composite stanchions

    图  11  C型/45°倒角触发T700GC碳纤维/环氧树脂复合材料立柱的稳定压缩载荷与截面积的关系

    Figure  11.  Variation of load with increasing cross section area for C type/45° chamfer triggered woven T700GC carbon fiber/epoxy composite stanchions

    图  12  所有构型T700GC碳纤维/环氧树脂复合材料立柱比吸能ESEA平均值

    Figure  12.  Average specific energy absorption ESEA of woven T700GC carbon fiber/epoxy composite stanchions of all configurations

    表  1  T700GC碳纤维/环氧树脂复合材料立柱准静态和动态压溃试验结果

    Table  1.   Static and dynamic test results of woven T700GC carbon fiber/epoxy composite stanchions

    CNSNa/mmb/mmh/mmSection typeTrigger typeLoading rateFmax/kNFave/kNEA/JESEA/(J·g−1)
    1-1 150-1 1.8 1.8 550 C 45°chamfer Static 35.40 17.00 3 636.20 52.60
    150-2 30.67 19.20 3 796.00 54.90
    Average 33.04 18.10 3 716.10 53.75
    1-2 150-3 1.8 1.8 550 C 45°chamfer Dynamic 54.52 16.10 4 810.80 40.80
    150-4 50.63 10.70 5 123.50 29.00
    Average 52.58 13.40 4 967.15 34.90
    2-1 160-1 2.5 2.5 550 C 45°chamfer Static 44.01 29.20 5 319.00 55.40
    160-2 38.24 26.60 5 383.00 56.00
    Average 41.13 27.90 5 351.00 55.70
    2-2 160-3 2.5 2.5 550 C Steeple Dynamic 42.78 19.80 4 813.30 35.30
    160-4 59.68 18.00 4 821.40 34.80
    Average 51.23 18.90 4 817.35 35.05
    3-1 170-1 3.5 2.5 550 C 45°chamfer Static 58.46 27.60 5 849.70 51.70
    170-3 57.37 26.40 5 768.00 51.00
    Average 57.92 27.00 5 808.85 51.35
    3-2 170-4 3.5 2.5 550 C 45°chamfer Dynamic 58.82 21.80 4 731.90 31.00
    170-5 56.58 22.40 4 744.10 33.00
    Average 57.70 22.10 4 738.00 32.00
    4-1 180-2 3.5 2.5 550 Wave 45°chamfer Static 61.47 40.00 8 766.10 73.50
    180-3 60.48 37.60 8 390.40 70.40
    Average 60.98 38.80 8 578.25 71.95
    4-2 180-4 3.5 2.5 550 Wave 45°chamfer Dynamic 63.38 24.90 4 584.00 36.80
    180-5 57.47 23.30 4 572.70 33.80
    Average 60.43 24.10 4 578.35 35.30
    5-1 190-1 3.5 2.5 250 C 45°chamfer Static 59.71 25.10 5 531.80 48.90
    190-2 55.76 29.40 5 802.90 51.30
    Average 57.74 27.25 5 667.35 50.10
    5-2 190-3 3.5 2.5 250 C 45°chamfer Dynamic 56.52 22.40 4 669.00 33.00
    190-4 46.36 18.70 4 738.20 27.10
    Average 51.44 20.55 4 703.60 30.05
    6-1 210-3 3.5 3.5 550 C 45°chamfer Static 51.45 28.10 6 079.90 45.20
    210-4 63.60 42.40 8 935.00 66.40
    Average 57.53 35.25 7 507.45 55.80
    6-2 210-5 3.5 3.5 550 C 45°chamfer Dynamic 85.97 28.10 4 467.50 32.20
    7-1 220-1 4 4 550 C Three tips Static 80.40 66.70 12 048.00 78.40
    220-2 73.90 57.70 11 864.00 77.20
    Average 77.15 62.20 11 956.00 77.80
    7-2 220-5 4 4 550 C Three tips Dynamic 35.08 21.90 4 720.00 23.30
    220-6 37.15 28.70 4 551.00 27.50
    Average 36.12 25.30 4 635.50 25.40
    Notes:CN—Configuration number of test specimens; SN—Serial number of test specimens; a, b, h—Characteristic dimension of tested specimens(see Fig.3); Fmax—Triggering load; Fave—Steady state crushing load; EA—Energy absorbed; ESEA—Specific energy absoption.
    下载: 导出CSV
  • [1] FERABOLI P. Development of a modified flat-plate test specimen and fixture for composite material crush energy absorption[J]. Journal of Composite Material,2009,43(19):1967-1990. doi: 10.1177/0021998309343025
    [2] FERABOLI P, GARATTONI F, DELEO F. Toward the development of a test standard for characterizing the energy absorption of composite materials: Part Ⅱ[C]//The 17th International Committee on Composite Material Meeting. Scotland: [s. n.], 2009.
    [3] DELEO F, FERABOLI P. Crashworthiness energy absorption of carbon fiber composites: Experiment and simulation[C]//AMTAS Fall Meeting. Seattle: [s. n.], 2012.
    [4] DAVID M, JOHNSON A F, VOGGENREITER H. Analysis of crushing response of composite crashworthy structures[J]. Applied Composite Materials,2013,20(5):773-787.
    [5] JOOSTEN M W. Experimental and numerical investigation of triggered composite energy absorbing structures[D]. Sydney: School of Mechanical and Manufacturing Engineering University of New South Wales, 2011.
    [6] DEEPAK S. Crashworthy design and analysis of aircraft structures[D]. Philadelphia: Drexel University, 2013.
    [7] BOLUKAASI A O, BAXTER T R, NGUYEN T A, et al. Energy absorbing structure for aircraft: America, US 8376275[P]. 2013-2-19.
    [8] 程群峰, 许亚洪, 廖建伟, 等. 引发机制对复合材料波形梁吸能性能的影响及其破坏形貌分析[J]. 复合材料学报, 2008, 25(1):161-167. doi: 10.3321/j.issn:1000-3851.2008.01.027

    CHENG Qunfeng, XU Yahong, LIAO Jianwei, et al. Effects of triggers on the energy absorption behavior of sine-wave beam and the crush morphology[J]. Acta Materiae Compositae Sinica,2008,25(1):161-167(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.027
    [9] 印春伟, 徐建, 童明波. 复合材料的应用对波纹梁吸能能力的改进分析[J]. 江苏航空, 2012(s1):130-132.

    YIN Chunwei, XU Jian, TONG Mingbo. Improvement of energy absorbing capacity of waved beams by using composite material[J]. Jiangsu Aeronautics,2012(s1):130-132(in Chinese).
    [10] 冯振宇, 袁鹏, 邹田春, 等. 不同波纹梁结构吸能特性仿真分析[J]. 机械科学与技术, 2014, 33(6):948-952.

    FENG Zhenyu, YUAN Peng, ZOU Tianchun, et al. Simulation analysis of energy absorption characteristics for different waved beams[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(6):948-952(in Chinese).
    [11] 孟祥吉, 燕瑛, 罗海波, 等. 复合材料波纹梁冲击试验与数值模拟[J]. 复合材料学报, 2015, 32(1):196-203.

    MENG Xiangji, YAN Ying, LUO Haibo, et al. Fabrication and axial compression properties of composite corrugated sandwich cylindrical shells[J]. Acta Materiae Compositae Sinica,2015,32(1):196-203(in Chinese).
    [12] 牟浩蕾, 邹田春, 杜月娟, 等. 复合材料波纹板轴向压溃仿真及机身框段适坠性分析[J]. 航空材料学报, 2015, 35(4):55-62. doi: 10.11868/j.issn.1005-5053.2015.4.009

    MOU Haolei, ZOU Tianchun, DU Yuejuan, et al. Simulation of axial crush characteristic of composite sinusoidal specimen and analysis of crashworthiness of fuselage section[J]. Journal of Aeronautical Materials,2015,35(4):55-62(in Chinese). doi: 10.11868/j.issn.1005-5053.2015.4.009
    [13] 冯丽娜, 熊健, 郑伟, 等. 复合材料波纹夹层圆柱壳设计及轴压性能[J]. 复合材料学报, 2016, 33(2):418-429.

    FENG Lina, XIONG Jian, ZHENG Wei, et al. Fabrication and axial compression properties of composite corrugated sandwich cylindrical shells[J]. Acta Materiae Compositae Sinica,2016,33(2):418-429(in Chinese).
    [14] 解江, 马骢瑶, 周建, 等. 复合材料机身C型柱准静态压溃仿真及失效模式[J]. 航空材料学报, 2017, 37(2):73-80. doi: 10.11868/j.issn.1005-5053.2016.000163

    XIE Jiang, MA Congyao, ZHOU Jian, et al. Quasi-static crushing simulation research and failure mode analysis of composite thin-walled C-channel specimen[J]. Journal of Aeronautical Materials,2017,37(2):73-80(in Chinese). doi: 10.11868/j.issn.1005-5053.2016.000163
    [15] 解江, 牟浩蕾, 邹田春, 等. 货舱载荷对复合材料机身框段适坠性影响分析[J]. 机械强度, 2017, 39(1):100-105.

    XIE Jiang, MOU Haolei, ZOU Tianchun, et al. Simulation analysis of cargo loading on crashworthiness of composite fuseluge section[J]. Journal of Mechanical Strength,2017,39(1):100-105(in Chinese).
    [16] 蒋宏勇, 任毅如, 袁秀良 , 等. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J]. 航空学报, 2017, 38(6):160-172.

    JIANG Hongyong, REN Yiru, YUAN Xiuliang, et al. Crashworthiness of composite corrugated beam based on nonlinear progressive damage model[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6):160-172(in Chinese).
    [17] 张平, 桂良进, 范子杰. 编织复合材料圆管准静态轴向压缩吸能特性的试验研究[J]. 复合材料学报, 2017, 24(1):146-150.

    ZHANG Ping, GUI Liangjin, FAN Zijie. Experimental investigation on the energy absorption characteristic of braided composite circular tubes subjected to quasistatic axial compression[J]. Acta Materiae Compositae Sinica,2017,24(1):146-150(in Chinese).
    [18] 苟仲秋, 孙侠生, 宋笔锋. 民机地板以下结构参数变化对机身适坠性能的影响研究[J]. 航空计算技术, 2007, 37(6):32-35. doi: 10.3969/j.issn.1671-654X.2007.06.010

    GOU Zhongqiu, SUN Xiasheng, SONG Bifeng. Research of influence of sub floor structural parameters to crashworthiness of civil aircraft fuselage[J]. Aeronautical Computing Technique,2007,37(6):32-35(in Chinese). doi: 10.3969/j.issn.1671-654X.2007.06.010
    [19] 苟仲秋, 孙侠生, 宋笔锋. 民机地板以下结构参数变化对复合材料机身适坠性能的影响研究[J]. 机械科学与技术, 2008, 27(5):620-624. doi: 10.3321/j.issn:1003-8728.2008.05.013

    GOU Zhongqiu, SUN Xiasheng, SONG Bifeng. Influence of subfloor structural parameters on the fuselage crashworthiness of composite material civil aircraft[J]. Mechanical Science and Technology for Aerospace Engineering,2008,27(5):620-624(in Chinese). doi: 10.3321/j.issn:1003-8728.2008.05.013
    [20] 张景新, 邱光荣. 环氧树脂基直升机复合材料耐坠性性能试验研究[J]. 直升机技术, 2008(2):47-50. doi: 10.3969/j.issn.1673-1220.2008.02.010

    ZHANG Jingxin, QIU Guangrong. The research of crashworthness performance for helicopter epoxy composite[J]. Helicopter Technique,2008(2):47-50(in Chinese). doi: 10.3969/j.issn.1673-1220.2008.02.010
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  949
  • HTML全文浏览量:  335
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-20
  • 网络出版日期:  2020-01-13
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回