留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层多向层联三维机织复合材料的拉伸性能

郭瑞卿 张一帆 吕庆涛 陈利

郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001
引用本文: 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001
GUO Ruiqing, ZHANG Yifan, LV Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001
Citation: GUO Ruiqing, ZHANG Yifan, LV Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2409-2417. doi: 10.13801/j.cnki.fhclxb.20200110.001

多层多向层联三维机织复合材料的拉伸性能

doi: 10.13801/j.cnki.fhclxb.20200110.001
基金项目: 国家自然科学基金(11802203);天津市自然基金(18JCQNJC73200;18JCYBJC87300);天津市科技计划项目(18 ZXJMTG00190);生态纺织教育部重点实验室开放基金(KLET1605)
详细信息
    通讯作者:

    张一帆,博士,助理研究员,研究方向为纺织复合材料制备及力学性能 E-mail:zhangyifan@tiangong.edu.cn

  • 中图分类号: TB332

Tensile properties of multilayer multiaxial interlock 3D woven composites

  • 摘要: 设计制备了3种不同结构的多层多向层联三维机织复合材料(M3DAWC),利用非接触式全场应变测量系统和SEM对其拉伸性能进行了研究。研究表明,织物结构对M3DAWC的宏观力学行为有重要的影响,沿0°方向拉伸,破坏模式随着斜向纱体积分数的增加,从齐口破坏演变为斜向纱的抽拔失效,沿90°方向拉伸,破坏模式基本一致,表现为斜向纱的抽拔和滑脱。同时,斜向纱体积分数对M3DAWC的拉伸强度和拉伸模量也有显著影响,沿0°方向拉伸,随着斜向纱体积分数的增加,拉伸强度和拉伸模量逐渐减小,沿90°方向拉伸则表现出相反的变化规律。

     

  • 图  1  多层多向层联三维机织结构示意图

    Figure  1.  Schematic diagram of multilayer multiaxial interlock three-dimensional woven structure

    图  2  M3DAWC拉伸试验试样

    Figure  2.  Tensile test samples of M3DAWC

    图  3  M3DAWC拉伸试验过程

    Figure  3.  Tensile test process of M3DAWC

    图  4  M3DAWC拉伸应力-应变曲线

    Figure  4.  Tensile stress-strain curves of M3DAWC

    图  5  M3DAWC应变云图

    Figure  5.  Strain contours of M3DAWC

    图  6  M3DAWC试样断裂形貌

    Figure  6.  Fracture morphologies of M3DAWC samples

    图  7  应变仪测得M3DAWC应力-应变曲线

    Figure  7.  Stress-strain curves of M3DAWC measured by strain gauge

    图  8  M3DAWC拉伸强度和拉伸模量

    Figure  8.  Tensile strength and modulus of M3DAWC

    图  9  斜向纱比例对M3DAWC强度的影响

    Figure  9.  Effect of proportion of bias yarn on the strength of M3DAWC

    表  1  碳纤维规格

    Table  1.   Specification of carbon fiber

    Yarn systemYarn specificationDensity/(g·cm−3)Yarn linear density/tex
    Binder warp TG800HXC-6K 1.8 250
    90° yarn TG800X-12K×2 1.8 1 000
    0° yarn TG800X-12K×2 1.8 1 000
    ±45° yarn TG800X-12K×2 1.8 1 000
    下载: 导出CSV

    表  2  碳纤维力学性能

    Table  2.   Mechanical properties of carbon fiber

    Product typeTensile strength/MPaBreakage elongation/%Tensile modulus/GPa
    TG8005 6782.32290
    下载: 导出CSV

    表  3  多层多向层联三维机织复合材料(M3DAWC)结构参数

    Table  3.   Structural parameters of multilayer multiaxial interlock three-dimensional woven composites (M3DAWC)

    No.Layer stacking sequenceFabric density/(tow·m−1)Thickness h/mmFiber volume fraction/vol%
    0° direction90° direction±45° direction
    SY01J [90/45/0/0/-45/90/-45/0/0/45/90] 4 4 4 5.65 54.71
    SY01W 5.75 54.03
    SY02J [90/45/0/-45/90/-45/0/45/90] 4 4 4 4.64 55.49
    SY02W 4.58 55.77
    SY03J [90/45/-45/90/-45/45/90] 4 4 4 4.09 55.49
    SY03W 3.90 54.94
    下载: 导出CSV

    表  4  DIC和应变片试验结果对比

    Table  4.   Comparison of experimental results between DIC and strain gauge

    No.Tensile modulus/GPaDeviation/%
    Strain gaugeDIC
    SY01-0 53.45 55.10 2.99
    SY01-90 42.73 42.48 0.59
    SY02-0 42.63 40.49 5.28
    SY02-90 47.82 47.92 0.21
    SY03-0 18.39 18.92 2.80
    SY03-90 51.32 50.82 0.98
    下载: 导出CSV
  • [1] 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6):1364-1373.

    WANG Ya'na, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica,2019,36(6):1364-1373(in Chinese).
    [2] CALLUS P J, MOURITZ A P, BANNISTER M K, et al. Tensile properties and failure mechanisms of 3D woven GRP composites[J]. Composites Part A: Appliedence & Manufacturing,1999,30(11):1277-1287. doi: 10.1016/S1359-835X(99)00033-0
    [3] YAHYA M F, GHANI S A, SALLEH J. Modeling plain woven composite model with isotropic behavior[C]. Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design, 2014, 2014: 19-24.
    [4] 卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1):150-159.

    LU Zixing, ZHOU Yuan, FENG Zhihai, et al. Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):150-159(in Chinese).
    [5] 李典森, 卢子兴, 李嘉禄, 等. 三维编织T300/环氧复合材料的弯曲性能及破坏机理[J]. 航空材料学报, 2009, 29(5):82-87. doi: 10.3969/j.issn.1005-5053.2009.05.016

    LI Diansen, LU Zixing, LI Jialu, et al. Bending properties and failure mechanism of three dimensional T300/epoxy braided composites[J]. Journal of Aeronautical Materials,2009,29(5):82-87(in Chinese). doi: 10.3969/j.issn.1005-5053.2009.05.016
    [6] MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology,2003,64(9):1311-1319.
    [7] MORSCHER G N, YUN H M, DICALO J A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. American Ceramic Society, 2007, 90(10): 3185–3193.
    [8] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2):59-64. doi: 10.3321/j.issn:1000-3851.2006.02.011

    YANG Caiyun, LI Jialu. Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica,2006,23(2):59-64(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.011
    [9] KIMBARA M, FUKUTA K, TSUZUKI M, et al. Three-dimensional multi-axis fabric composite materials and methods and apparatuses for making the same: USA, 5076330[P]. 1991-12-31.
    [10] KIMBARA M, TSUZUKI M. Method and apparatus for weaving rod piercing type three-dimensional multiple-axis fabric: USA, 5228481[P]. 1993-7-20.
    [11] FARLEY G L. Method and apparatus for weaving a woven angle ply fabric: USA, 5224519[P]. 1993-7-6.
    [12] ANAHARA M, YASUI Y, SUGOH M, et al. Three-dimensional fabric with symmetrically arranged warp and bias yarn layers: USA, 5270094[P]. 1993-12-14.
    [13] UCHIDA H, YAMAMOTO T, TAKASHIMA H, et al. Three-dimensional weaving machine: USA, 6003563[P]. 1999-12-21.
    [14] MOHAMED M H, BILISIK A K. Multi-layer three-dimensional fabric and method for producing: US Patent, 5465760[P]. 1995-11-14.
    [15] BILISIK A K. Multiaxial three-dimensional (3-D) circular woven fabric: USA, 6129122[P]. 2000-10-10.
    [16] BILISIK K. Multiaxis three-dimensional circular woven preforms–“radial crossing weaving” and “radial in–out weaving”: Preliminary investigation of feasibility of weaving and methods[J]. The Journal of the Textile Institute,2010,101(11):967-987. doi: 10.1080/00405000903080985
    [17] LABANIEH A R, LEGRAND X, KONCAR V, et al. Evaluation of the elastic behavior of multiaxis 3D woven preforms by numerical approach[J]. Journal of Composite Materials,2014,48(26):3243-3252. doi: 10.1177/0021998313508800
    [18] LABANIEH A R, LEGRAND X, KONCAR V, et al. Novel optimization method to estimate the geometrical properties of a multiaxial 3D woven preform[J]. Reinforced Plastics and Composites,2013,32(10):700-712. doi: 10.1177/0731684412472746
    [19] BILISIK K. Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites[J]. Journal of Reinforced Plastics and Composites,2010,29(8):1173-1186. doi: 10.1177/0731684409103153
    [20] 王心淼, 陈利, 张典堂, 等. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(2):45-52.

    WANG Xinmiao, CHEN Li, ZHANG Diantang, et al. Micro-structure and properties of multilayer multiaxial woven composites[J]. Journal of Textile Research,2019,40(2):45-52(in Chinese).
    [21] American Society for Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M—2007[S]. United States: American Society for Testing Materials International, 2007.
    [22] 白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D]. 沈阳: 东北大学, 2011.

    BAI Xiaohong. Application of digital image correlation method in study of material deformation[D]. Shenyang: Northeastern University, 2011(in Chinese).
    [23] 张睿诚. 数字图像相关方法在应变测量中的应用研究[D]. 重庆: 重庆大学, 2017.

    ZHANG Ruicheng. The application of digital image correlation method in strain measurement[D]. Chongqing: Chongqing University, 2017(in Chinese).
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  382
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 录用日期:  2020-01-02
  • 网络出版日期:  2020-01-10
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回