留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能

吴少惠 马荣锋 吴平伟 戴金辉

吴少惠, 马荣锋, 吴平伟, 等. 空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能[J]. 复合材料学报, 2020, 37(10): 2401-2408. doi: 10.13801/j.cnki.fhclxb.20200106.001
引用本文: 吴少惠, 马荣锋, 吴平伟, 等. 空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能[J]. 复合材料学报, 2020, 37(10): 2401-2408. doi: 10.13801/j.cnki.fhclxb.20200106.001
WU Shaohui, MA Rongfeng, WU Pingwei, et al. Compression molding process and performance of hollow glass microsphere/epoxy resin solid buoyancy materials[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2401-2408. doi: 10.13801/j.cnki.fhclxb.20200106.001
Citation: WU Shaohui, MA Rongfeng, WU Pingwei, et al. Compression molding process and performance of hollow glass microsphere/epoxy resin solid buoyancy materials[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2401-2408. doi: 10.13801/j.cnki.fhclxb.20200106.001

空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能

doi: 10.13801/j.cnki.fhclxb.20200106.001
基金项目: 国家重点研发计划项目(2019YFC140810402);青岛海洋科学与技术国家实验室开放课题(QNLM2016ORP0414)
详细信息
    通讯作者:

    戴金辉,博士,教授,硕士生导师,研究方向为固体浮力材料的制备及应用 E-mail:daijh@ouc.edu.cn

  • 中图分类号: TB332

Compression molding process and performance of hollow glass microsphere/epoxy resin solid buoyancy materials

  • 摘要: 借鉴陶瓷材料模压成型工艺提出了适用于环氧树脂基固体浮力材料制备的真空辅助模压成型自由固化方法,实现了固体浮力材料制备过程中成型与固化环节的分离,为高性能固体浮力材料的制备提供了新方法。以环氧树脂(E-4221)为基体,空心玻璃微珠(Hollow glass microsphere, HGMS)做填充材料,采用模压成型自由固化方法制备高HGMS体积分数的HGMS/E-4221固体浮力材料,研究了HGMS体积分数、成型压力对HGMS/E-4221固体浮力材料密度、抗压强度、吸水率等性能的影响。结果表明,真空辅助模压成型自由固化方法适用于HGMS体积分数为65%~67%的HGMS/E-4221固体浮力材料制备,所获得的HGMS/E-4221固体浮力材料密度为0.621~0.655 g/cm3,适用深度可达到8 000~10 000 m。

     

  • 图  1  固体浮力材料成型过程示意图

    Figure  1.  Forming process diagram of solid buoyancy material

    图  2  成型压力对空心玻璃微珠/环氧树脂(HGMS/E-4221)固体浮力材料密度的影响

    Figure  2.  Effect of forming pressure on density of hollow glass microsphere/epoxy resin(HGMS/E-4221) solid buoyancy materials

    图  3  HGMS体积分数对HGMS/E-4221固体浮力材料密度的影响

    Figure  3.  Effect of HGMS volume fraction on density of HGMS/E-4221 solid buoyancy materials

    图  4  成型压力对HGMS/E-4221固体浮力材料抗压强度的影响

    Figure  4.  Effect of molding pressure on compressive strength of HGMS/E-4221 solid buoyancy materials

    图  5  HGMS体积分数对HGMS/E-4221固体浮力材料抗压强度的影响

    Figure  5.  Effect of HGMS volume fraction on compressive strength of HGMS/E-4221 solid buoyancy materials

    图  6  成型压力对HGMS/E-4221固体浮力材料吸水率的影响(静水压力10 MPa、24 h)

    Figure  6.  Effect of forming pressure on water absorption of HGMS/E-4221 solid buoyancy materials (Hydrostatic pressure for 10 MPa, 24 h)

    图  7  静水压力对HGMS/E-4221固体浮力材料吸水率的影响(成型压力4 MPa)

    Figure  7.  Effect of hydrostatic pressure on water absorption of HGMS/E-4221 solid buoyancy materials (Forming pressure for 4 MPa)

    图  8  不同HGMS体积分数的HGMS/E-4221复合材料微观形貌

    Figure  8.  Microstructures of HGMS/E-4221composite with different HGMS volume fractions

  • [1] MICHEL J. In the trenches topside remembrances by the chief of the boat, DSV trieste[J]. Marine Technology Society Journal,2009,43(5):20-22. doi: 10.4031/MTSJ.43.5.8
    [2] YANO Y, TAKAGAWA S. Study on buoyancy material by engineering ceramics[J]. Report of Japan Marine Science and Technology Center,2004,49:81-87.
    [3] GALL M L, CHOQUEUSE D, GAC P Y L, et al. Novel mechanical characterization method for deep sea buoyancy material under hydrostatic[J]. Polymer Testing,2014,39(10):36-44.
    [4] WESTON S, OLSSON M, MEREWETHER R, et al. Flotation in ocean trenches using hollow ceramic spheres[J]. Marine Technology Society Journal,2009,43(5):110-114. doi: 10.4031/MTSJ.43.5.24
    [5] 何成贵, 张培志, 郭方全, 等. 全海深浮力材料发展综述[J]. 机械工程材料, 2017, 41(9):14-18. doi: 10.11973/jxgccl201709002

    HE Chenggui, ZHANG Peizhi, GUO Wanquang, et al. Development review of full ocean depth buoyancy material[J]. Materials for Mechanical Engineering,2017,41(9):14-18(in Chinese). doi: 10.11973/jxgccl201709002
    [6] 李乐, 于良民, 李昌诚, 等. 固体浮力材料及其性能研究现状[J]. 材料导报, 2012, 26(17):66-69. doi: 10.3969/j.issn.1005-023X.2012.17.014

    LI Le, YU Liangmin, LI Changcheng, et al. Solid buoyancy material and research status on its properties[J]. Materials Review,2012,26(17):66-69(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.17.014
    [7] 黄炳坤. 固体浮力材料制备及性能研究[D]. 大连: 大连理工大学, 2015.

    HUANG Bingkui. Research on the preparation and performance of solid buoyancy material[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [8] 汪永良. 三相组合泡沫材料[J]. 化学工程师, 1988(5):7-9.

    WANG Yongliang. Three-phase composite foam material[J]. Chemical Engineer,1988(5):7-9(in Chinese).
    [9] 宋邦增. 固体浮力材料研制[J]. 材料开发与应用, 1986(3):9-15.

    SONG Bangzeng. Development of solid buoyancy materials[J]. Development and Application of Materials,1986(3):9-15(in Chinese).
    [10] 刘峰, 李向阳. 中国载人深潜蛟龙号研发历程[M]. 北京: 海洋出版社, 2016.

    LIU Feng, LI Xiangyang. Development of Chinese submersible Jiaolong's footmarks[M]. Beijing: China Ocean Press, 2016(in Chinese).
    [11] AN Zhenguo, ZHANG Jingjie. Glass-iron oxide, glass-iron and glass-iron-carbon composite hollow particles with tunable electromagnetic properties[J]. Journal of Materials Chemistry C,2016,4(34):7979-7988. doi: 10.1039/C6TC02669A
    [12] AN Zhenguo, ZHANG Jingjie, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken, hollow glass microsphere on mechanical and thermal insulation property[J]. Composites Science & Technology,2013,79(5):64-69.
    [13] HU Yan, WANG Yuanhua, AN Zhenguo, et al. The super-hydrophobic IR-reflectivity TiO2 coated hollow glass microspheres synthesized by soft-chemistry method[J]. Journal of Physics & Chemistry of Solids,2016,98:43-49.
    [14] 李芝华, 陈明, 李珍, 等. 界面活化处理对固体浮力材料力学性能的影响[J]. 高分子材料科学与工程, 2016, 32(11):70-74.

    LI Zhihua, CHEN Ming, LI Zhen, et al. Influences of surface treatment on mechanical property of epoxy resin solid buoyancy materials[J]. Polymer Materials Science & Engineering,2016,32(11):70-74(in Chinese).
    [15] 陈晨阳, 李仙会, 马颖琦, 等. 环氧树脂基固体浮力材料的吸水性及压缩性[J]. 理化检验(物理分册), 2018, 54(6):390-394.

    CHEN Chenyang, LI Xianhui, MA Yingqi, et al. Water absorption and compressibility of solid buoyancy materials based on epoxy resins[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing),2018,54(6):390-394(in Chinese).
    [16] 周金磊, 戴金辉, 吴平伟, 等. 环氧树脂基固体浮力材料的制备及性能研究[J]. 材料开发与应用, 2013, 28(2):59-65.

    ZHOU Jinlei, DAI Jinhui, WU Pingwei, et al. Research on preparation and properties of solid buoyancy materials based on epoxy resins[J]. Development and Application of Materials,2013,28(2):59-65(in Chinese).
    [17] 马新蕾, 戴金辉, 周金磊, 等. 空心微珠对树脂基复合材料成型及性能的影响[J]. 材料科学, 2013, 3(1):30-34. doi: 10.12677/MS.2013.31006

    MA Xinlei, DAI Jinhui, ZHOU Jinlei, et al. Effect of content of hollow glass microsphere on forming and properties of resin-based composite material[J]. Material Sciences,2013,3(1):30-34(in Chinese). doi: 10.12677/MS.2013.31006
    [18] 中国国家标准化管理委员会. 树脂浇铸体压缩性能试验方法: GB/T 2569—1995[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People’s Republic of China. Test method for compressive properties of resin casting body: GB/T 2569—1995[S]. Beijing: China Standards Press, 1996(in Chinese).
    [19] 刘艳, 刘文智, 马春霞. 深水固体浮力材料的制备及性能研究[J]. 舰船科学技术, 2017, 39(5):87-90.

    LIU Yan, LIU Wenzhi, MA Chunxia. Research on preparation and properties of deep water solid buoyancy materials[J]. Ship Science and Technology,2017,39(5):87-90(in Chinese).
    [20] 李涛, 魏明坤, 王逢爽. 成型因素对Al2O3-ZrO2陶瓷材料性能的影响[J]. 武汉理工大学学报, 2010, 32(18):20-23. doi: 10.3963/j.issn.1671-4431.2010.18.006

    LI Tao, WEI Mingkun, WANG Fengshuang. Effect of forming factors for the property of Al2O3-ZrO2 ceramic[J]. Journal of Wuhan University of Technology,2010,32(18):20-23(in Chinese). doi: 10.3963/j.issn.1671-4431.2010.18.006
    [21] 刘圆圆, 戴金辉, 吴平伟. 模压成型高微珠含量复合泡沫材料的制备及性能研究[J]. 材料开发与应用, 2015, 30(3):72-77.

    LIU Yuanyuan, DAI Jinhui, WU Pingwei. Preparation and properties of high microspheres levels of syntactic foam by molded forming[J]. Development and Application of Materials,2015,30(3):72-77(in Chinese).
    [22] 任素娥, 陶鑫, 耿海涛, 等. 空心微球/环氧树脂材料制备及性能研究[J]. 稀有金属材料与工程, 2015, 44(S1):299-302.

    REN Sue, TAO Xin, GENG Haitao, et al. Preparation and properties of hollow microspheres/epoxy resin materials[J]. Rare Metal Materials and Engineering,2015,44(S1):299-302(in Chinese).
    [23] 王平, 严开祺, 潘顺龙, 等. 深水固体浮力材料研究进展[J]. 工程研究-跨学科视野中的工程, 2016, 8(2):223-229.

    WANG Ping, YAN Kaiqi, PAN Shunlong, et al. Research progress of deep water solid buoyancy materials[J]. Engineering Research-Engineering from an Interdisciplinary Perspective,2016,8(2):223-229(in Chinese).
    [24] 梁小杰, 梁忠旭, 周媛, 等. 全海深浮力材料性能分析[J]. 热固性树脂, 2016, 31(5):38-41.

    LIANG Xiaojie, LIANG Zhongxu, ZHOU Yuan, et al. Performance analysis of deep sea buoyancy materials[J]. Thermosetting Resin,2016,31(5):38-41(in Chinese).
  • 加载中
图(8)
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  507
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 录用日期:  2019-12-29
  • 网络出版日期:  2020-01-06
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回