留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合法制备聚丙烯酸修饰的ZnS量子点

杨春风 李勰 张颖鑫 王婷婷 王会

杨春风, 李勰, 张颖鑫, 等. 原位聚合法制备聚丙烯酸修饰的ZnS量子点[J]. 复合材料学报, 2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003
引用本文: 杨春风, 李勰, 张颖鑫, 等. 原位聚合法制备聚丙烯酸修饰的ZnS量子点[J]. 复合材料学报, 2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003
YANG Chunfeng, LI Xie, ZHANG Yingxin, et al. In-situ polymerization approach for preparation polyacrylic acid coated ZnS quantum dots[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003
Citation: YANG Chunfeng, LI Xie, ZHANG Yingxin, et al. In-situ polymerization approach for preparation polyacrylic acid coated ZnS quantum dots[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2258-2264. doi: 10.13801/j.cnki.fhclxb.20200103.003

原位聚合法制备聚丙烯酸修饰的ZnS量子点

doi: 10.13801/j.cnki.fhclxb.20200103.003
基金项目: 国家自然科学基金(21405085);宁波市自然科学基金(2017A6100232)
详细信息
    通讯作者:

    杨春风,硕士,讲师,研究方向为功能纳米材料 E-mail:ycf@nbut.edu.cn

  • 中图分类号: TQ322

In-situ polymerization approach for preparation polyacrylic acid coated ZnS quantum dots

  • 摘要: 采用原位聚合法对ZnS量子点表面进行聚丙烯酸(PAA)的修饰。利用XRD、FTIR、TEM、TGA、荧光测试等对ZnS@PAA复合纳米粒子进行系列表征。XRD分析表明,修饰后的ZnS仍为立方晶相。FTIR和TGA结果证明,ZnS纳米粒子表面存在PAA。TEM结果表明,修饰后ZnS@PAA复合纳米粒子在去离子水中分散良好,其直径有所增加,约为28 nm,且呈较明显的核-壳结构。荧光测试发现,修饰PAA前后ZnS@PAA复合纳米粒子的发光特性没有发生明显改变。实验表明,经PAA修饰后,ZnS@PAA复合纳米粒子在水溶液中的分散性和稳定性得到提高,抗氧化性和荧光稳定性也得到了一定的增强。

     

  • 图  1  原位聚合前后ZnS量子点结构示意图

    Figure  1.  Structure diagram of ZnS quantum dots before and after in-situ polymerization

    PAA—Polyacrylic acid

    图  2  ZnS和ZnS@聚丙烯酸(PAA)复合纳米粒子的XRD图谱

    Figure  2.  XRD patterns of ZnS and ZnS@polyacrylicacid(PAA) composite nanoparticles

    图  3  ZnS和ZnS@PAA复合纳米粒子的FTIR图谱

    Figure  3.  FTIR spectra of ZnS and ZnS@PAA composite nanoparticles

    图  4  ZnS和ZnS@PAA复合纳米粒子的TGA曲线

    Figure  4.  TGA curves of ZnS and ZnS@PAA composite nanoparticles

    图  5  ZnS和ZnS@PAA复合纳米粒子的荧光光谱

    Figure  5.  Fluorescence spectra of ZnS and ZnS@PAA composite nanoparticles

    图  6  ZnS和ZnS@PAA复合纳米粒子的TEM 图像

    Figure  6.  TEM images of ZnS and ZnS@PAA composite nanoparticles

    图  7  ZnS和ZnS@PAA复合纳米粒子的分散性能

    Figure  7.  Dispersion performance of ZnS and ZnS@PAA composite nanoparticles

    图  8  ZnS和ZnS@PAA复合纳米粒子的抗氧化性能

    Figure  8.  Antioxidant performance of ZnS and ZnS@PAA composite nanoparticles

    图  9  ZnS和ZnS@PAA复合纳米粒子的荧光稳定性能

    Figure  9.  Fluorescence stability performance of ZnS and ZnS@PAA composite nanoparticles

    表  1  ZnS和ZnS@PAA复合纳米粒子的平均晶粒尺寸

    Table  1.   Average grain sizes of ZnS and ZnS@PAA composite nanoparticles

    SampleAverage grain size D/nm
    ZnS 19.06
    ZnS@PAA 26.12
    下载: 导出CSV
  • [1] KHAN Z M S H, RAHMAN R S, SHUMAILA, et al. Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe<sup>3+</sup>[J]. Optical Materials,2019,91:386-395. doi: 10.1016/j.optmat.2019.03.054
    [2] FENG S A, GAO Z, LIU H, et al. Feasibility of detection valence speciation of Cr(Ⅲ) and Cr(Ⅵ) in environmental samples by spectrofluorimetric method with fluorescent carbon quantum dots[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,212:286-292.
    [3] CHANDAN H R, SCHIFFMAN J D, BALAKRISHNA R G, et al. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications[J]. Sensors and Actuators B: Chemical,2018,258:1191-1214. doi: 10.1016/j.snb.2017.11.189
    [4] NSIBANDE S A, FORBES P B C. Fluorescence detection of pesticides using quantum dot materials: A review[J]. Analytica Chimica Acta,2016,945:9-22.
    [5] RESHMA V G, MOHANAN P V. Quantum dots: Applications and safety consequences[J]. Journal of Luminescence,2019,205:287-298. doi: 10.1016/j.jlumin.2018.09.015
    [6] 周万万, 王丽, 李军荣, 等. ZnS量子点/纤维素复合材料的制备及光催化性能[J]. 应用化工, 2019, 48(9):2021-2025.

    ZHOU W W, WANG L, LI J R, et al. Preparation and photocatalytic performance of ZnS quantum dots cellulose matrix composites[J]. Applied Chemical Industry,2019,48(9):2021-2025(in Chinese).
    [7] KATHIRESAN R, GOPALAKRISHNAN S, KOLANDAIVEL P. Interaction and bioconjugation of CdSe/ZnS core/shell quantum dots with maltose-binding protein[J]. Computational and Theoretical Chemistry,2017,1101:96-101.
    [8] ARGUDO P G, MARTÍN-ROMERO M T, CAMACHO L, et al. Fluorinated CdSe/ZnS quantum dots: Interactions with cell membrane[J]. Colloids and Surfaces B: Biointerfaces,2019,173:148-154.
    [9] BARDI G, MALVINDI M A, GHERARDINI L, et al. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot doped SiO<sub>2</sub> nanoparticles with primary neural cells and their gene carrying performance[J]. Biomaterials,2010,31(25):6555-6566. doi: 10.1016/j.biomaterials.2010.04.063
    [10] 庄庆一, 由芳田, 彭洪尚. 基于CdSe@ZnS量子点水溶性纳米粒子的制备及荧光性能[J]. 发光学报, 2018, 39(10):1339-1346. doi: 10.3788/fgxb20183910.1339

    ZHUANG Q Y, YOU F T, PENG H S. Synthesis and fluorescence properties research of water-soluble nanoparticles based on CdSe@ZnS quantum dots[J]. Chinese Journal of Luminescence,2018,39(10):1339-1346(in Chinese). doi: 10.3788/fgxb20183910.1339
    [11] LIU B X, TONG C Y, FENG L J, et al. Water-soluble polymer functionalized CdTe/ZnS quantum dots: A facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives[J]. Chemistry,2014,20(8):2132-2138.
    [12] DENG N T, ZHOU X P, LI X, et al. Synthesis of NaYF<sub>4</sub>: Yb, Er/NaYF<sub>4</sub> nanoparticle coated with PAM by in-situ polymerization[J]. Journal of Physics and Chemistry of Solids,2013,74(3):480-486. doi: 10.1016/j.jpcs.2012.11.015
    [13] 李勰, 朱晓东, 王婷婷, 等. La掺杂纳米ZnO/硅藻土复合材料的制备及其对甲醛气体的降解性能[J]. 材料研究学报, 2018, 32(9):685-690. doi: 10.11901/1005.3093.2018.114

    LI X, ZHU X D, WANG T T, et al. Degradation of formaldehyde gas by composites of La-doped nano ZnO/diatomite[J]. Chinese Journal of Materials Research,2018,32(9):685-690(in Chinese). doi: 10.11901/1005.3093.2018.114
    [14] BASHIR S, TEO Y Y, RAMESH S, et al. Synthesis and characterization of karaya gumg-poly(acrylic acid) hydrogels and in vitro release of hydrophobic quercetin[J]. Polymer,2018,147:108-120. doi: 10.1016/j.polymer.2018.05.071
    [15] GAO D G, ZHANG Y H, LYU B, et al. Nanocomposite based on poly(acrylic acid)/attapulgite towards flame retardant of cotton fabrics[J]. Carbohydrate Polymers,2019,206:245-253. doi: 10.1016/j.carbpol.2018.10.113
    [16] 崔冉, 魏媛媛, 陈晶晶, 等. Cu/PAA的制备及其抗菌性能研究[J]. 工业微生物, 2019, 49(3):13-18. doi: 10.3969/j.issn.1001-6678.2019.03.003

    CUI R, WEI Y Y, CHEN J J, et al. Preparation and antibacterial activity of Cu/PAA[J]. Industrial Microbiology,2019,49(3):13-18(in Chinese). doi: 10.3969/j.issn.1001-6678.2019.03.003
    [17] CHELMINIAK D, ZIEGLER-BOROWSKA M, KACZMAREK H. Synthesis of magnetite nanoparticles coated with poly(acrylic acid) by photo polymerization[J]. Materials Letters,2016,164:464-467. doi: 10.1016/j.matlet.2015.11.023
    [18] WANG R, ZHAO L J, LI L, et al. Rose spherical structure Ag<sub>2</sub>S/ZnIn<sub>2</sub>S<sub>4</sub>/ZnS composites with visible light response: Enhanced photodegradation and hydrogen production performance[J]. Journal of Physics and Chemistry of Solids,2020,136:109-148.
    [19] LALITHADEVI B, RAO K M, RAMANANDA D. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method[J]. Chemical Physics Letters,2018,700:74-79. doi: 10.1016/j.cplett.2018.04.010
    [20] JABEEN U, ADHIKARI T, SHAH S M, et al. Synthesis, characterization and photovoltaic applications of noble metal: Doped ZnS quantum dots[J]. Chinese Journal of Physics,2019,58:348-362. doi: 10.1016/j.cjph.2019.01.012
    [21] JACOB J M, RAJAN R, AJI M, et al. Bio-inspired ZnS quantum dots as efficient photo catalysts for the degradation of methylene blue in aqueous phase[J]. Ceramics International,2019,45(4):4857-4862. doi: 10.1016/j.ceramint.2018.11.182
    [22] 张舰, 郝和群. ZnS/PAA纳米复合材料的制备及发光性能研究[J]. 合成技术与应用, 2015, 30(3):13-16.

    ZHANG J, HAO H Q. Preparation and luminescent performance of ZnS/PAA nanocomposite[J]. Synthetic Technology and Application,2015,30(3):13-16(in Chinese).
    [23] NGUYEN T P, LAM Q V, VU T B. Energy transfer in poly(vinyl alcohol)-encapsulated Mn-doped ZnS quantum dots[J]. Journal of Luminescence,2018,203:533-539. doi: 10.1016/j.jlumin.2018.07.010
    [24] 胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):207-212.

    HU X J, HU Y, XIE W L, et al. Preparation and photocatalytic properties of ZnS/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(1):207-212(in Chinese).
    [25] AMIRIAN F, MOLAEI M, KARIMIPOUR M, et al. A new and simple UV-assisted approach for synthesis of water soluble ZnS and transition metals doped ZnS nanoparticles (NPs) and investigating optical and photocatalyst properties[J]. Journal of Luminescence,2018,196:174-180. doi: 10.1016/j.jlumin.2017.12.005
    [26] CHEN X B, LI H, CHEN M F, et al. Visible-light-driven photocatalytic activities of monodisperse ZnS-coated reduced graphene oxide nanocomposites[J]. Materials Chemistry and Physics,2019,227:368-374. doi: 10.1016/j.matchemphys.2019.01.055
    [27] AGORKU E S, MITTAL H, MAMBA B B, et al. Fabrication of photocatalyst based on Eu<sup>3+</sup>-doped ZnS-SiO<sub>2</sub> and sodium alginate core shell nanocomposite[J]. International Journal of Biological Macromolecules,2014,70:143-149. doi: 10.1016/j.ijbiomac.2014.06.037
    [28] GAO Z K, LUAN Y, LU Y, et al. Fluorometric determination of sulfadiazine by using molecularly imprinted poly(methyl methacrylate) nanobeads doped with manganese(Ⅱ)-doped ZnS quantum dots[J]. Microchimica Acta,2019,186(9):625.
    [29] 章建忠, 徐国财, 王艳丽, 等. 纳米银镓合金/聚甲基丙烯酸甲酯复合粒子的结构表征[J]. 复合材料学报, 2007, 24(4):67-70. doi: 10.3321/j.issn:1000-3851.2007.04.012

    ZHANG J Z, XU G C, WANG Y L, et al. Characterization of the structure of Ag-Ga/PMMA nanoparticles[J]. Acta Materiae Compositae Sinica,2007,24(4):67-70(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.012
    [30] 杨冰. 用于纳米二氧化硅水体系的聚丙烯酸类分散剂的制备及性能研究[D]. 武汉: 武汉科技大学, 2019.

    YANG B. A dissertation submitted in partial fulfillment of the requirements for the degree of master in engineering[D]. Wuhan: Wuhan University of Science and Technology, 2019(in Chinese).
    [31] WAHLANDER M, NILSSON F, LARSSON E, et al. Polymer-grafted Al<sub>2</sub>O<sub>3</sub>-nanoparticles for controlled dispersion in poly(ethylene-co-butylacrylate) nanocomposites[J]. Polymer,2014,55(9):2125-2138. doi: 10.1016/j.polymer.2014.03.005
    [32] 铁伟伟, 杜兆禹, 高远浩, 等. 原位反应制备ZnS还原氧化石墨烯复合材料及其光催化性能[J]. 复合材料学报, 2017, 34(5):1082-1087.

    TIE W W, DU Z Y, GAO Y H, et al. In situ reaction fabrication of ZnS/reduced grapheme oxide composite an its photocatalytic property[J]. Acta Materiae Compositae Sinica,2017,34(5):1082-1087(in Chinese).
    [33] 王芳. 巯基丙酸修饰的CdTe@ZnS量子点的合成及其分析应用[D]. 太原: 山西医科大学, 2019.

    WANG F. Synthesis and applications of mercapto propionic acid capped CdTe@ZnS quantum dots[D]. Taiyuan: Shanxi Medical University, 2019(in Chinese).
    [34] AHMADPOER H, HOSSEINI S M M. A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples[J]. Talanta,2019,194:534-541.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1041
  • HTML全文浏览量:  319
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2019-11-06
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回