留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维

魏阿静 李运涛 马忠雷

魏阿静, 李运涛, 马忠雷. 柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维[J]. 复合材料学报, 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002
引用本文: 魏阿静, 李运涛, 马忠雷. 柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维[J]. 复合材料学报, 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002
WEI Ajing, LI Yuntao, MA Zhonglei. Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002
Citation: WEI Ajing, LI Yuntao, MA Zhonglei. Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2045-2054. doi: 10.13801/j.cnki.fhclxb.20200103.002

柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维

doi: 10.13801/j.cnki.fhclxb.20200103.002
基金项目: 国家自然科学基金(51903145);陕西省科学技术厅自然科学基础研究计划(2018JQ5060);陕西省教育厅专项科研计划项目(17JK0100);陕西科技大学科研启动基金(2016GBJ-08)
详细信息
    通讯作者:

    李运涛,硕士,教授,硕士生导师,研究方向为纳米材料的表面及界面 E-mail:liyt@sust.edu.cn

    马忠雷,博士,副教授,硕士生导师,研究方向为功能性聚合物基复合材料及发泡材料 E-mail: mazl@sust.edu.cn

  • 中图分类号: TB332

Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers

  • 摘要: 基于核-壳结构设计,采用简便、低成本的浸涂-固化法制得柔性、可拉伸、高灵敏且稳定的聚二甲基硅氧烷硅橡胶@多壁碳纳米管/聚二甲基硅氧烷硅橡胶(PDMS@MWCNTs/PDMS)压阻式应变传感纤维。通过FTIR、XRD、TG、TEM对硅烷偶联剂改性多壁碳纳米管(MWCNTs-KH570)的化学结构、热稳定性和微观形貌进行了分析,深入研究了核-壳结构与MWCNTs-KH570质量分数对PDMS@MWCNTs/PDMS复合纤维导电性能、传感性能及力学性能的影响规律与机制。结果表明:羟基化MWCNTs(MWCNTs—OH)表面接枝KH570使其在壳层PDMS基体中具有良好的分散性和界面相互作用;核-壳结构的设计使PDMS@MWCNTs/PDMS复合纤维在低填充下具有高电导率和传感性能;PDMS@MWCNTs/PDMS复合纤维的导电性能与传感性能随着MWCNTs-KH570质量分数增加而提高,且在人体关节运动监测中表现出良好的可重复性和工作稳定性。

     

  • 图  1  核-壳结构聚二甲基硅氧烷硅橡胶@多壁碳纳米管/聚二甲基硅氧烷硅橡胶(PDMS@MWCNTs/PDMS)复合纤维的制备示意图

    Figure  1.  Schematic illustration for fabrication of polydimethylsiloxane silicone rubber@multiwalled carbon nanotubes/polydimethylsiloxane silicone rubber(PDMS@MWCNTs/PDMS) composite fibers with a core-shell structure

    图  2  羟基化MWCNTs(MWCNTs—OH)和硅烷偶联剂改性MWCNTs(MWCNTs-KH570)的FTIR图谱(a)、TG曲线(b)和XRD图谱(c)

    Figure  2.  FTIR patterns(a), TG curves(b), XRD pattern(c) of hydroxylation MWCNTs(MWCNTs—OH) and silane coupling agent modified MWCNTs(MWCNTs-KH570)

    图  3  MWCNTs-KH570的微观形貌及MWCNTs—OH与MWCNTs-KH570的分散性

    Figure  3.  Micromorphology of MWCNTs-KH570 and dispersibility of MWCNTs—OH and MWCNTs-KH570

    图  4  复合纤维的光学显微镜图像与横断面SEM图像

    Figure  4.  Optical photographs and transverse section SEM images of the composite fibers ((a), (a') MWCNTs—OH/PDMS composite fibers; (b), (b') MWCNTs-KH570/PDMS composite fibers; (c), (c'), (c''), (c''') MWCNTs-KH570/PDMS composite fibers with a core-shell structure

    图  5  MWCNTs-KH570质量分数对PDMS@MWCNTs/PDMS复合纤维拉伸强度和断裂伸长率的影响

    Figure  5.  Effect of MWCNTs-KH570 mass fraction on the tensile strength and elongation at break of PDMS@MWCNTs/PDMS composite fibers

    图  6  PDMS@MWCNTs/PDMS复合纤维的导电性能

    Figure  6.  Electrical conductivities of PDMS@MWCNTs/PDMS composite fibers

    图  7  PDMS@MWCNTs/PDMS复合纤维的压阻特性和传感性能

    Figure  7.  Piezoresistive behaviors and sensing properties of PDMS@MWCNTs/PDMS composite fibers

    图  8  PDMS@MWCNTs/PDMS复合纤维的应变传感机制

    Figure  8.  Strain sensing mechanism for PDMS@MWCNTs/PDMS composite fibers

    图  9  PDMS@MWCNTs/PDMS复合纤维在LED灯照明和人体运动监测中的应用

    Figure  9.  Applications of PDMS@MWCNTs/PDMS composite fibers in LED lighting and human motion detection

    表  1  聚二甲基硅氧烷(PDMS)的配方

    Table  1.   Formula of poly (dimethylsiloxane) (PDMS)

    ComponentAB
    Designation Poly (dimethyl-methyl vinyl siloxane) Poly (dimethyl-methylhydro siloxane), Pt catalyst
    Mass ratio mAmB=10∶1
    下载: 导出CSV
  • [1] 胡圣飞, 徐成成, 张荣, 等. 聚合物基柔性导电应力应变复合材料的研究进展[J]. 高分子材料科学与工程, 2017(12):156-162.

    HU S F, XU C C, ZHANG R, et al. Research progress of polymer-based flexible conductive stress-strain compo-sites[J]. Polymer Materials Science and Engineering,2017(12):156-162(in Chinese).
    [2] LI C W, PAN L J, DENG C H, et al. A highly sensitive, wide range pressure sensor based on carbon nanocoil network fabricated by electrophoretic method[J]. Journal of Materials Chemistry C,2017,5(45):11892-11900. doi: 10.1039/C7TC04166G
    [3] 刘平, 黄英, 蔡文婷, 等. 基于炭黑填充导电橡胶的压力/温度传感器非线性特性[J]. 复合材料学报, 2013, 30(5):9-13. doi: 10.3969/j.issn.1000-3851.2013.05.002

    LIU P, HUANG Y, CAI W T, et al. Nonlinear characteristics of pressure/temperature sensor based on carbon black filled conductive rubber[J]. Acta Materiae Compositae Sinica,2013,30(5):9-13(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.002
    [4] 金欣, 畅旭东, 王闻宇, 等. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11):17-28.

    JIN X, CHANG X D, WANG W Y, et al. Research progress of polydimethylsiloxane flexible wearable sensors[J]. Journal of Materials Engineering,2018,46(11):17-28(in Chinese).
    [5] 赵木森, 于海波, 孙丽娜, 等. 基于石墨烯/PEDOT-PSS复合材料制备的可穿戴柔性传感器[J]. 中国科学: 技术科学, 2019, 49(7):851-860. doi: 10.1360/N092018-00429

    ZHAO M S, YU H B, SUN L N, et al. Flexible wearable sensor based on graphene/PEDOT-PSS composite material[J]. Scientia Sinica (Technologica),2019,49(7):851-860(in Chinese). doi: 10.1360/N092018-00429
    [6] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001

    ZHANG M Y, YANG Z H, WU Z J, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190923.001
    [7] WANG Z W, ZHOU H W, LAI J L, et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic network for wearable strain sensors[J]. Journal of Materials Chemistry C,2018,6:9200-9207.
    [8] ZHENG Q B, LIU X, XU H R, et al. Sliced graphene foam films for dual-functional wearable strain sensors and switches[J]. Nanoscale Horizons,2017,3(1):35-44.
    [9] LU L J, WEI X D, ZHANG Y, et al. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties[J]. Journal of Materials Chemistry C,2017,5(28):7035-7042. doi: 10.1039/C7TC02429K
    [10] QIN Y Y, PENG Q Y, DING Y J, et al. Light-weight, super-elastic and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano,2015,9(9):8933-8941. doi: 10.1021/acsnano.5b02781
    [11] WANG S, XIAO P, LIANG Y, et al. Network cracks-based wearable strain sensors for both subtle and large strain detection of human motions[J]. Journal of Materials Chemistry C,2018,6(19):5140-5147. doi: 10.1039/C8TC00433A
    [12] 刘平, 黄英, 廉超, 等. 炭黑填充导电橡胶的力敏传感器灵敏系数[J]. 复合材料学报, 2012, 30(3):51-55.

    LIU P, HUANG Y, LIAN C, et al. Sensitivity coefficient of force sensitive sensor for carbon black filled conductive rubber[J]. Acta Materiae Compositae Sinica,2012,30(3):51-55(in Chinese).
    [13] 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 322(07):215-222.

    HE Y, ZHOU Y Y, LIU H, et al. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Progress,2018,322(07):215-222(in Chinese).
    [14] WANG M, ZHANG K, DAI X X, et al. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites by constructing a self-segregated structure[J]. Nanoscale,2017,9(31):11017-11026. doi: 10.1039/C7NR02322G
    [15] YAN C Y, WANG J X, KANG W B, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors[J]. Advanced Materials,2014,26(13):2022-2027. doi: 10.1002/adma.201304742
    [16] AMJADI M, PICHITPAJONGKIT A, LEE S J, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano,2014,8(5):5154-5163. doi: 10.1021/nn501204t
    [17] YIN F X, YANG J Z, PENG H F, et al. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric[J]. Journal of Materials Chemistry C,2018,6(25):6840-6846. doi: 10.1039/C8TC00839F
    [18] TAO L Q, ZHANG K N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano,2017,11(9):8790-8795. doi: 10.1021/acsnano.7b02826
    [19] HAN F, LI J H, ZHAO S F, et al. A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors[J]. Journal of Materials Chemistry C,2017,5(39):10167-10175. doi: 10.1039/C7TC03636A
    [20] HUANG W, DAI K, ZHAI Y, et al. Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability[J]. ACS Applied Materials <italic>&</italic> Interfaces,2017,9(48):42266-42277.
    [21] MA Z L, WEI A J, MA J Z, et al. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors[J]. Nanoscale,2018,10(15):7116-7126. doi: 10.1039/C8NR00004B
    [22] WANG S M, ZHANG X X, WU X D, et al. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly[J]. Soft Matter,2016,12(3):845-852. doi: 10.1039/C5SM01958C
    [23] DONG D D, MA J Z, MA Z L, et al. Flexible and lightweight microcellular RGO@Pebax composites with synergistic 3D conductive channels and microcracks for piezoresistive sensors[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 222-231.
    [24] WANG Y, YANG R, SHI Z W, et al. Super-elastic graphene ripples for flexible strain sensors[J]. ACS Nano,2011,5(5):3645-3650. doi: 10.1021/nn103523t
    [25] WAN Y B, QIU Z G, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin[J]. Small,2018,14(35):1801657-1801665. doi: 10.1002/smll.201801657
    [26] YUN Y J, JU J, LEE J H, et al. Highly elastic graphene-based electronics toward electronic skin[J]. Advanced Functional Materials,2017,27(33):1701513-1701523. doi: 10.1002/adfm.201701513
    [27] YU Y, LUO Y F, GUO A, et al. Flexible and transparent strain sensors based on super-aligned carbon nanotube films[J]. Nanoscale,2017,9(20):6716-6723. doi: 10.1039/C6NR09961K
    [28] LIU Z F, WANG R, JIANG N, et al. A bi-sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials,2017,27(35):1702134-1702147. doi: 10.1002/adfm.201702134
    [29] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology,2011,6(5):296-301. doi: 10.1038/nnano.2011.36
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  310
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 录用日期:  2019-11-30
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回