留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制

郭丽君 陆方舟 李想 蔡登安 张庆茂 陈建农 刘伟先 周光明

郭丽君, 陆方舟, 李想, 等. 碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制[J]. 复合材料学报, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
引用本文: 郭丽君, 陆方舟, 李想, 等. 碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制[J]. 复合材料学报, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
GUO Lijun, LU Fangzhou, LI Xiang, et al. Tensile failure mechanism of carbon fiber/epoxy composite winding joint[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001
Citation: GUO Lijun, LU Fangzhou, LI Xiang, et al. Tensile failure mechanism of carbon fiber/epoxy composite winding joint[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2163-2172. doi: 10.13801/j.cnki.fhclxb.20200102.001

碳纤维/环氧树脂复合材料缠绕接头拉伸失效机制

doi: 10.13801/j.cnki.fhclxb.20200102.001
基金项目: 江苏高校优势学科建设工程(PAPD);江苏省基础研究计划(自然科学基金)(BK20190394);中央高校基本科研业务费专项资金(NS2019001)
详细信息
    通讯作者:

    周光明,博士,教授,博士生导师,研究方向为先进复合材料结构设计及工程问题的计算机建模 E-mail:zhougm@nuaa.edu.cn

  • 中图分类号: TB332

Tensile failure mechanism of carbon fiber/epoxy composite winding joint

  • 摘要: 通过试验及数值模拟对碳纤维/环氧树脂复合材料缠绕接头轴向拉伸失效机制进行研究。基于ABAQUS有限元软件,通过连续介质损伤模型及内聚区模型,分别对碳纤维/环氧树脂复合材料缠绕接头各部件及界面进行模拟,编写用户自定义材料子程序(UMAT),建立复合材料的渐进损伤模型,最终得到碳纤维/环氧树脂复合材料缠绕接头的应力分布和载荷-位移曲线,并与试验结果对比确定结构的失效机制。结果表明:有限元分析所得碳纤维/环氧树脂复合材料缠绕接头损伤部位及失效模式与试验吻合,失效载荷与试验值相差较小,证明仿真分析方法的有效性。通过对比失效模式发现,拉伸载荷作用下,链环是主承力部件,其弧形端部是应力集中处,纤维断裂即从此处开始发生并向外扩展,导致链环断裂及整体结构破坏。

     

  • 图  1  碳纤维/环氧树脂复合材料缠绕接头几何尺寸

    Figure  1.  Geometry configuration of carbon fiber/epoxy composite winding joint

    图  2  复合材料缠绕接头试件加载示意图

    Figure  2.  Loading diagram of composite winding joint specimen

    图  3  复合材料缠绕接头试件装夹示意图

    Figure  3.  Clamping diagram of composite winding joint specimen

    图  4  复合材料缠绕接头应变片布置示意图

    Figure  4.  Schematic of strain gauge positions of composite winding joint

    图  5  碳纤维/环氧树脂复合材料缠绕接头的载荷-位移曲线

    Figure  5.  Load-displacement curves of carbon fiber/epoxy composite winding joint

    图  6  碳纤维/环氧树脂复合材料缠绕接头试件T-1应变-载荷曲线

    Figure  6.  Strain-load curves of carbon fiber/epoxy composite winding joint specimen T-1

    图  7  复合材料缠绕接头三维实体模型

    Figure  7.  3D solid model of composite winding joint

    图  8  复合材料缠绕接头有限元模型约束加载示意图

    Figure  8.  Schematic of constraint and load for finite element model of composite winding joint

    图  9  碳纤维/环氧树脂复合材料缠绕接头有限元模型载荷-位移曲线

    Figure  9.  Load-displacement curve of finite element model for carbon fiber/epoxy composite winding joint

    图  10  碳纤维/环氧树脂复合材料缠绕接头第一阶段应力云图

    Figure  10.  Contour of stress of carbon fiber/epoxy composite winding joint in the first stage

    F—Force; U—Displacement

    图  11  碳纤维/环氧树脂复合材料缠绕接头第二阶段胶层损伤演化及对应应力云图

    Figure  11.  Contour of damage evolution and corresponding stress for adhesive layer of carbon fiber/epoxy composite winding joint in the second stage

    图  12  碳纤维/环氧树脂复合材料缠绕接头第三阶段链环损伤演化过程

    Figure  12.  Contour of damage evolution for loop plies of carbon fiber/epoxy composite winding joint in the third stage

    图  13  碳纤维/环氧树脂复合材料缠绕接头第三阶段链环应力云图

    Figure  13.  Contour of stress for loop plies of carbon fiber/epoxy composite winding joint in the third stage

    图  14  碳纤维/环氧树脂复合材料缠绕接头试件T-1~T-4失效模式

    Figure  14.  Failure modes of carbon fiber/epoxy composite winding joint specimens T-1–T-4

    图  15  碳纤维/环氧树脂复合材料缠绕接头胶层最终损伤形式

    Figure  15.  Final form of damage for adhesive layer of carbon fiber/epoxy composite winding joint

    表  1  碳纤维/环氧树脂复合材料的性能参数

    Table  1.   Properties of carbon fiber/epoxy composite

    CCF300/BA9916-ⅡCF3031/BA9916-Ⅱ
    E11/GPa 120 60
    E22/GPa 7.7 59
    E33/GPa 7.7 7.7
    μ12=μ13=μ23 0.27 0.05
    G12=G13/GPa 5.5 6.4
    G23/GPa 5.5 6.4
    XT/MPa 1 400 500
    XC/MPa 1 300 450
    YT/MPa 35 450
    YC/MPa 160 455
    ZT/MPa 35 50
    ZC/MPa 160 155
    S12=S13/MPa 163 105
    S23/MPa 86 83
    Notes: Eii (i, j=1, 2, 3)—Elastic modulus in direction of fibre, perpendicular to fibre in plane and out of plane; XT, YT, ZT—Tensile strength in the three directions above, respectively; XC, YC, ZC—Compress strength in the three directions above, respectively; μij, Gij, Sij (i, j=1, 2, 3)—Poisson’s ratio, shear modulus and shear strength for 1-2, 1-3, 2-3 plane, respectively.
    下载: 导出CSV

    表  2  碳纤维/环氧树脂复合材料缠绕接头轴向拉伸试验结果

    Table  2.   Axial tensile load test results of carbon fiber/epoxy composite winding joint

    Specimen numberFailure load/kNAverage load/kNCoefficient of variation/%
    T-1 41.94 41.07 6.49
    T-2 38.73
    T-3 38.56
    T-4 45.06
    下载: 导出CSV

    表  3  碳纤维/环氧树脂复合材料缠绕接头性能退化方式

    Table  3.   Degradation modes of carbon fiber/epoxy composite winding joint

    Failure modeStiffness degradation of material
    Tensile fracture of fiber ${E'_{11}} = 0.07{E_{11}}$
    Compression fracture of fiber ${E'_{11}} = 0.14{E_{11}}$
    Tensile cracking of matrix ${E'_{22}} = 0.2{E_{22}},{G'_{12}} = 0.2{G_{12}},{G'_{23}} = 0.2{G_{23}}$
    Compression cracking of matrix ${E'_{22}} = 0.4{E_{22}},{G'_{12}} = 0.4{G_{12}},{G'_{23}} = 0.4{G_{23}}$
    Delamination ${E'_{33} } = {G'_{13} } = {G'_{23} } = {v'_{13} } = {v'_{23} } = 0$
    下载: 导出CSV

    表  4  J-116B结构胶材料属性

    Table  4.   Material properties of J-116B

    $E/{E_{ {\rm{nn} } } }/({\rm{MPa} }{\rm{\cdot m} }{ {\rm{m} }^{ {\rm{ - 1} } } })$${G_1}/{E_{ {\rm{ss} } } }/({\rm{MPa} }{\rm{\cdot m} }{ {\rm{m} }^{ {\rm{ - 1} } } })$${G_2}/{E_{ {\rm{tt} } } }/({\rm{MPa} }{\rm{\cdot m} }{ {\rm{m} }^{ {\rm{ - 1} } } })$$t_{\rm{n}}^0/{\rm{MPa}}$$t_{\rm{s}}^0/{\rm{MPa}}$$t_{\rm{t}}^0/{\rm{MPa}}$${G^{\rm{C} } }/({\rm{J} }{\rm{\cdot} }{ {\rm{m} }^{\rm{ - } } }^{\rm{2} })$
    1 000 300 300 20 30 30 2
    Notes:$E/{E_{{\rm{nn}}}}$, ${G_1}/{E_{{\rm{ss}}}}$, ${G_2}/{E_{{\rm{tt}}}}$—Interface stiffness for three directions, respectively; $t_{\rm{n}}^0$, $t_{\rm{t}}^0$, $t_{\rm{t}}^0$—Interface strength for three directions, respectively.
    下载: 导出CSV

    表  5  碳纤维/环氧树脂复合材料缠绕接头部分测点应变仿真值与试验值对比

    Table  5.   Comparison of simulation and test values of some stain gauges on carbon fiber/epoxy composite winding joint

    Strain gauge numberSimulation value/10−6Test value/10−6Error/%
    7 −420 −745 43.62
    9 619 479 29.23
    11 1 993 1 861 7.09
    23 4 124 4 285 3.76
    25 1 863 1 754 6.21
    下载: 导出CSV
  • [1] 杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京: 航空工业出版社, 2002.

    YANG N B, ZHANG Y N. Composite structure design of aircraft[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
    [2] HOLZWARTH R C. The structural cost and weight reduction potential of more unitized aircraft structure: AIAA-98-1872[R]. Reston: American Institute of Aeronautics and Astronautics, 1998.
    [3] BUTLER B, FELLOW A. Composites affordability initiative: AIAA-2000-1379[R]. Reston: American Institute of Aeronautics and Astronautics, 2000.
    [4] ENGELSTAD S P, BERRY O T, RENIERI G D, et al. A high fidelity composite bonded joint analysis validation study Part Ⅰ: Analysis: AIAA-2005-2166[R]. Reston: American Institute of Aeronautics and Astronautics, 2005.
    [5] PHILIPS H J, SHENOI R A. Damage tolerance of laminated tee-joints in FRP structures[J]. Composites Part A: Applied Science <italic>&</italic> Manufacturing,1998,29 (4):465-478.
    [6] 王国平, 黄领才, 王冠. 复合材料层板多钉连接设计与试验研究[C]//第19届全国直升机年会论文. 哈尔滨: 中国航空学会, 2003: 65-70.

    WANG G P, HUANG L C, WANG G. Design and experimental research of composite laminate multi-bolted joint[C]//The 19th National Helicopter Conference. Harbin: Chinese Society of Aeronautics and Astronautics, 2003: 65-70(in Chinese).
    [7] 孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527.

    SUN X, TONG M B, CHEN Z, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2016,33(11):2517-2527(in Chinese).
    [8] 石好男, 王继辉, 张桂明. 复合材料L型接头的损伤与破坏模式研究[J]. 玻璃钢/复合材料, 2019(3):16-20.

    SHI H N, WANG J H, ZHANG G M. The research on damage and failure modes of composite L-joint[J]. Fiber Reinforced Plastics/Composites,2019(3):16-20(in Chinese).
    [9] CHANG F K, SCOTT R A, SPRINGER G S. Strength of mechanically fastened composite joints[J]. Journal of Composite Materials,1982,16(6):470-494. doi: 10.1177/002199838201600603
    [10] WOLFF R V, LEMON G H. Reliability prediction for composite joints-bonded and bolted: AD-A026408[R]. [s. l.]: [s. n.], 1976.
    [11] KASSAPOGLOU C, TOWNSEND W A. Failure prediction of composite lugs under axial loads[J]. AIAA Journal,2003,41(11):2239-2243. doi: 10.2514/2.6816
    [12] WALLIN M, SAARELA O, LAW B, et al. RTM composite lugs for high load transfer applications[C]//Congress of the International Council of the Aeronautical Sciences. Hamburg: Helsinki University of Technology, 2006.
    [13] 史坚忠, 黄维扬. 复合材料缠绕接头几种受力状态的解析分析[J]. 南京航空航天大学学报, 1999, 31(6):722-726.

    SHI J Z, HUANG W Y. Analysis of winding composite joints at several load conditions[J]. Journal of Nanjing University of Aeronautics <italic>&</italic> Astronautics,1999,31(6):722-726(in Chinese).
    [14] 史坚忠, 黄维杨. 复合材料承力接头设计的相关理论与应用概述[J]. 洪都科技, 1999(1):1-7.

    SHI J Z, HUANG W Y. A survey of related theory and application of bearing-load joints of composite materials[J]. Hongdu Science and Technology,1999(1):1-7(in Chinese).
    [15] 程家林. 层压复合材料连接接头设计及其在大飞机中的应用[J]. 航空学报, 2008, 29(3):640-644. doi: 10.3321/j.issn:1000-6893.2008.03.017

    CHENG J L. Design of composite laminated joint and its application in large aircrafts[J]. Acta Aeronautica et Astronautica Sinica,2008,29(3):640-644(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.017
    [16] 张文荣. 复合材料耳片接头承载能力试验[J]. 洪都科技, 2001(1):38-42, 54.

    ZHANG W R. Test for load-bearing capacity of lug connector of composite material[J]. Hongdu Science and Technology,2001(1):38-42, 54(in Chinese).
    [17] 王强, 王建华, 黎小宝, 等. 环绕型复合材料接头层间开裂问题分析和改进措施[J]. 教练机, 2013(2):62-65.

    WANG Q, WANG J H, LI X B, et al. Analysis and improvement on laminated cracking of circular composite joint[J]. Trainer,2013(2):62-65(in Chinese).
    [18] HAVAR T, WERCHNER C, MIDDENDORF J. Design and manufacturing of composite aerospace load introduction structures[C]//AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2011.
    [19] HAVAR T, DRECHSLER K. Design and progressive failure analysis of 3D-reinforced composite force introduction loops[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2008.
    [20] 雷良超, 周光明, 陆方舟, 等. 复合材料缠绕接头拉伸失效性能有限元分析[J]. 兵器装备工程学报, 2018, 39(4):174-178. doi: 10.11809/bqzbgcxb2018.04.037

    LEI L C, ZHOU G M, LU F Z, et al. Finite element analysis on tensile properties of composite winding joint[J]. Journal of Ordnance Equipment Engineering,2018,39(4):174-178(in Chinese). doi: 10.11809/bqzbgcxb2018.04.037
    [21] 雷良超. 复合材料缠绕接头力学性能研究[D]. 南京: 南京航空航天大学, 2018.

    LEI L C. Research on mechanical properties of the winding composite lug[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2018(in Chinese).
    [22] 王耀先. 复合材料力学与结构设计[M]. 上海: 华东理工大学出版社, 2012.

    WANG Y X. Mechanics and structural design of composite materials [M]. Shanghai: East China University of Science and Technology Press, 2012(in Chinese).
    [23] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1981,48(4):846-852. doi: 10.1115/1.3157744
    [24] CAMANHO P P, DÁVILA C G. Mixed-mode decohesion elements for the simulation of delamination in composite materials: NASA/TM-2002-211737[R]. Washington: NASA, 2002.
    [25] 陈丁丁, 朱萌, 胡其高, 等. 含拼接铺层碳纤维增强树脂复合材料拉伸破坏机制[J]. 复合材料学报, 2020, 37(6):1312-1320.

    CHEN D D, ZHU M, HU Q G, et al. Tensile failure mechanism of carbon fiber reinforced polymer composites with ply splice[J]. Acta Materiae Compositae Sinica,2020,37(6):1312-1320(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  533
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2019-12-13
  • 网络出版日期:  2020-01-02
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回