留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析

梅生启 唐广 杨斌 王元丰

梅生启, 唐广, 杨斌, 等. 基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析[J]. 复合材料学报, 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002
引用本文: 梅生启, 唐广, 杨斌, 等. 基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析[J]. 复合材料学报, 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002
MEI Shengqi, TANG Guang, YANG Bin, et al. Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002
Citation: MEI Shengqi, TANG Guang, YANG Bin, et al. Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2055-2064. doi: 10.13801/j.cnki.fhclxb.20191230.002

基于分数阶黏弹性模型的木塑复合材料蠕变/回复性能分析

doi: 10.13801/j.cnki.fhclxb.20191230.002
基金项目: 国家自然科学基金(51778044)
详细信息
    通讯作者:

    梅生启,博士,讲师,研究方向为工程材料与结构的长期性能、动力性能 E-mail:cshqmei@stdu.edu.cn

  • 中图分类号: TU531.6

Creep/recovery behavior analysis of wood-plastic composites based on fractional order viscoelastic model

  • 摘要: 木塑复合材料(WPC)是一种木质纤维增强聚合物的新型环保复合材料,为分析WPC在非恒定荷载下的变形行为,进行结构的长期变形设计,对WPC的蠕变/回复变形进行计算分析。采用叠加原理对比分析既有蠕变计算模型对WPC蠕变/回复的整体预测效果。结果表明,现有模型均不能良好预测其蠕变/回复行为。采用基于分数阶微积分的黏弹性模型对其蠕变/回复行为进行预测,提出一种双参数法的修正分数阶黏弹性模型。通过与已有实测数据对比表明,该模型能够准确反映WPC的静态黏弹性行为。结合实验数据,给出了不同WPC蠕变/回复模型的参数取值。

     

  • 图  1  材料蠕变/回复示意图

    Figure  1.  Material creep/recovery diagram

    图  2  广义Kelvin模型示意图

    Figure  2.  Diagram of generalized Kelvin model

    图  3  分数阶导数分形理论示意图

    Figure  3.  Schematic diagram of fractal theory of fractional derivatives

    图  4  分数阶模型

    Figure  4.  Fractional order model

    图  5  基于叠加原理方法的蠕变恢复计算

    Figure  5.  Creep recovery calculation based on superposition principle method

    图  6  模型计算木塑复合材料(WPC)蠕变结果(实测应变来自文献[7])

    Figure  6.  Creep of wood-plastic composite(WPC) calculated by the models (Measured strains were selected from Ref. [7])

    图  7  模型计算WPC蠕变结果(实测应变来自文献[8])

    Figure  7.  Creep of WPC calculated by the models (Measured strains were selected from Ref.[8])

    图  8  分数阶模型计算WPC蠕变结果(实测应变来自文献[7])

    Figure  8.  Creep of WPC calculated by fractional order model (Measured strains were selected from Ref.[7])

    图  9  分数阶模型计算WPC蠕变结果(实测数据来源于文献[8])

    Figure  9.  Creep of WPC calculated by fractional order model (Measured strains were selected from Ref.[8])

    图  10  基于叠加原理的WPC蠕变/回复全曲线(实测数据来源于文献[7])

    Figure  10.  Creep/recovery curves of WPC based on superposition principle (Measured strains were selected from Ref.[7])

    图  11  基于叠加原理的WPC蠕变/回复全曲线(实测数据来源于文献[8])

    Figure  11.  Creep/recovery curves of WPC based on superposition principle (Measured strains were selected from Ref.[8])

    图  12  基于叠加原理的分数阶模型预测WPC蠕变/回复全曲线(实测数据来源于文献[7])

    Figure  12.  WPC creep/recovery curves calculated by fractional model based on superposition principle (Measured strains were selected from Ref.[7])

    图  13  基于叠加原理的分数阶模型预测WPC蠕变/回复全曲线(实测数据来源于文献[8])

    Figure  13.  WPC creep/recovery curves calculated by fractional order model based on superposition principle (Measured strains were selected from Ref.[8])

    图  14  双参数法修正Findley模型计算WPC蠕变/回复全曲线(实测数据来源于文献[8])

    Figure  14.  WPC creep/recovery curves calculated by two-parameter method modified Findley model (Measured strains were selected from Ref.[8])

    图  15  双参数法修正分数阶模型计算WPC蠕变/回复全曲线(实测数据来源于文献[8])

    Figure  15.  WPC creep/recovery curves calculated by two-parameter method modified factional order model (Measured strains were selected from Ref.[8])

    表  1  WPC分数阶模型拟合参数

    Table  1.   Fitting parameters of fractional order model of WPC

    Test No.E0/MPaη0/(MPa·s)aη1/ (MPa·s)R2
    10%-50WPC 3 613 36 828 0.184 3 447.6 0.999
    10%-60WPC 5 997 6 774 056 0.216 5 188 0.998
    10%-70WPC 6 798 35 157 0.262 12 186 0.999
    20%-50WPC 2 688 27 011 701 0.226 28 377 0.997
    20%-60WPC 5 388 5 674 429 0.214 32 700 0.994
    20%-70WPC 7 747 9 872 0.244 71 360 0.994
    30%-50WPC 2 001 754 019 0.246 35 462 0.981
    30%-60WPC 5 056 1 132 038 0.256 48 518 0.990
    30%-70WPC 7 637 1 402 0.246 77 392 0.935
    Notes: E0—Elasticity coefficient; η0, η1—Viscous coefficients; 10%-50WPC—Stress level is 10% and the mass fraction of wood fiber is 50wt%; a—Fractional derivative order; R2—Goodness of fitting.
    下载: 导出CSV

    表  2  WPC Findley幂律模型蠕变回复阶段拟合参数

    Table  2.   Fitting parameters of Findley power law model in creep recovery stage of WPC

    Test No.abR2
    10%-50WPC 0.098 0.111 9 0.990
    10%-60WPC 0.063 0.125 8 0.979
    10%-70WPC 0.060 0.088 3 0.833
    20%-50WPC 0.094 0.198 2 0.752
    20%-60WPC 0.144 0.114 3 0.996
    20%-70WPC 0.113 0.109 5 0.987
    30%-50WPC 0.656 0.073 5 0.988
    30%-60WPC 0.191 0.132 5 0.984
    30%-70WPC 0.134 0.131 1 0.991
    Note: a, b—Model parameters after unloading.
    下载: 导出CSV

    表  3  WPC修正分数阶黏弹性模型蠕变回复阶段拟合参数

    Table  3.   Fitting parameters of fractional order model in creep recovery stage of WPC

    Test No.E0/MPaη0/(MPa·s)aη1/(MPa·s)R2
    10%-50WPC 31.0 130 0.30 1 227.50 0.995
    10%-60WPC 54.4 31 0.22 574.49 0.990
    10%-70WPC 99.1 1738 724 0.21 641.86 0.988
    20%-50WPC 41.7 17 0.12 104.73 0.991
    20%-60WPC 123.5 56 0.13 139.34 0.999
    20%-70WPC 4 307.4 397 0.11 111.41 0.987
    30%-50WPC 47.8 15 0.08 43.26 0.999
    30%-60WPC 112.1 6 643 0.16 169.39 0.999
    30%-70WPC 375.9 11 0.10 115.08 0.999
    下载: 导出CSV
  • [1] 刘彬, 李彬, 王怀栋, 等. 木塑复合材料应用现状及发展趋势[J]. 工程塑料应用, 2017, 45(1):137-141. doi: 10.3969/j.issn.1001-3539.2017.01.027

    LIU Bin, LI Bin, WANG Huaidong, et al. Application status and development trend of wood plastic composite[J]. Engineering Plastics Application,2017,45(1):137-141(in Chinese). doi: 10.3969/j.issn.1001-3539.2017.01.027
    [2] 杨庆贤, 刘治生. 木-塑复合材料建筑的研制[J]. 工业建筑, 1995, 2:23-25. doi: 10.3321/j.issn:1000-8993.1995.04.005

    YANG Qingxian, LIU Zhisheng. Development of building form work made of wood and plastic composite materials[J]. Industrial Construction,1995,2:23-25(in Chinese). doi: 10.3321/j.issn:1000-8993.1995.04.005
    [3] OKSMAN-NISKA K, SAIN M. Wood-polymer compo-sites[M]. Florida: CRC Press, 2008.
    [4] ALRUBAIE M A A, LOPEZ-ANIDO R A, GARDNER D J, et al. Experimental investigation of the hygro-thermal creep strain of wood–plastic composite lumber made from thermally modified wood[J]. Journal of Thermoplastic Composite Materials,2019:0892705718820398.
    [5] YADAV S M, YUSOH K B. Subsurface mechanical properties and subsurface creep behaviour of modified nanoclay-based wood-plastic composites studied by nanoindentation[J]. Polymer Bulletin,2019,76(5):2179-2196. doi: 10.1007/s00289-018-2497-5
    [6] SAIN M M, BALATINECZ J, LAW S. Creep fatigue in engineered wood fiber and plastic compositions[J]. Journal of Applied Polymer Science,2000,77(2):260-268. doi: 10.1002/(SICI)1097-4628(20000711)77:2<260::AID-APP3>3.0.CO;2-H
    [7] 曹岩, 徐海龙, 王伟宏, 等. 模压成型的杨木纤维/高密度聚乙烯复合材料蠕变性能和蠕变模型[J]. 复合材料学报, 2016, 33(6):1174-1178.

    CAO Yan, XU Hailong, WANG Weihong, et al. Creep properties and creep model of poplar wood fiber/high-density polyethylene composites prepared by compression molding[J]. Acta Materiae Compositae Sinica,2016,33(6):1174-1178(in Chinese).
    [8] 杜虎虎, 王伟宏, 王海刚, 等. 木纤维含量对木塑复合材料蠕变特性的影响[J]. 建筑材料学报, 2015, 18(2):333-339. doi: 10.3969/j.issn.1007-9629.2015.02.026

    DU Huhu, WANG Weihong, WANG Haigang, et al. Influence of wood fiber content on the creep behavior of wood fiber-plastic composite[J]. Journal of Building Materials,2015,18(2):333-339(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.026
    [9] MAINARDI F. Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models[M]. London: Imperial College Press, 2010.
    [10] 李卓. 粘弹性分数阶导数模型及其在固体发动机上的应用[D].北京: 清华大学, 2000.

    LI Zhuo. Viscoelastic fractional derivative model and its application on solid rocket motor[D]. Beijing: Tsinghua University, 2000 (in Chinese).
    [11] WU F, LIU J F, WANG J. An improved maxwell creep model for rock based on variable-order fractional derivatives[J]. Environmental Earth Sciences,2015,73(11):6965-6971. doi: 10.1007/s12665-015-4137-9
    [12] CELAURO C, FECAROTTI C, PIRROTTA A, et al. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures[J]. Construction and Building Materials,2012,36:458-466. doi: 10.1016/j.conbuildmat.2012.04.028
    [13] 刘甲国, 徐明瑜. 人颅骨粘弹性的分数阶模型研究[J]. 中国生物医学工程学报, 2005, 24(1):12-16. doi: 10.3969/j.issn.0258-8021.2005.01.003

    LIU Jiaguo, XU Mingyu. Study on a fractional model of viscoelasticity of human cranial bone[J]. Chinese Journal of Biomedical Engineering,2005,24(1):12-16(in Chinese). doi: 10.3969/j.issn.0258-8021.2005.01.003
    [14] 王礼立, 任辉启, 虞吉林, 等. 非线性应力波传播理论的发展及应用[J]. 固体力学学报, 2013, 34(3):217-240. doi: 10.3969/j.issn.0254-7805.2013.03.001

    WANG Lili, REN Huiqi, YU Jilin, et al. Development and application of the theory of nonlinear stress wave propagation[J]. Acta Mechanica Solida Sinica,2013,34(3):217-240(in Chinese). doi: 10.3969/j.issn.0254-7805.2013.03.001
    [15] 张忠, 贾玉, 高云, 等. 聚合物纳米复合材料蠕变性能研究进展[J]. 力学进展, 2011, 41(3):266-278.

    ZHANG Zhong, JIA Yu, GAO Yun, et al. Research progress in creep of polymer nanocomposites[J]. Advances in Mechanics,2011,41(3):266-278(in Chinese).
    [16] 徐海龙, 曹岩, 王伟宏, 等. 杨木纤维尺寸对热压成型杨木纤维/高密度聚乙烯复合材料力学和蠕变性能的影响[J]. 复合材料学报, 2016, 33(6):1168-1173.

    XU Hailong, CAO Yan, WANG Weihong, et al. Effects of poplar wood fiber size on mechanical and creep properties of poplar wood fiber/high-density polyethylene composites prepared by hot-compression molding[J]. Acta Materiae Compositae Sinica,2016,33(6):1168-1173(in Chinese).
    [17] HEYMANS N, BAUWENS J C. Fractal rheological models and fractional differential equations for viscoelastic behavior[J]. Rheologica Acta,1994,33(3):210-219. doi: 10.1007/BF00437306
    [18] NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete[M]. New York: Construction Press, 1983.
    [19] CHRISTENSEN R M. Theory of viscoelasticity[M]. New York: Academic Press, 1990.
    [20] KUO C K. Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified linear superposition principle[J]. Modern Physics Letters B,2019,26:1950299.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  346
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 录用日期:  2019-12-21
  • 网络出版日期:  2019-12-31
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回