留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于复合材料剩余强度的衍生疲劳损伤模型

赵晟 张继文

赵晟, 张继文. 一种基于复合材料剩余强度的衍生疲劳损伤模型[J]. 复合材料学报, 2020, 37(10): 2473-2481. doi: 10.13801/j.cnki.fhclxb.20191224.002
引用本文: 赵晟, 张继文. 一种基于复合材料剩余强度的衍生疲劳损伤模型[J]. 复合材料学报, 2020, 37(10): 2473-2481. doi: 10.13801/j.cnki.fhclxb.20191224.002
ZHAO Sheng, ZHANG Jiwen. A derivative fatigue damage model based on residual strength of composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2473-2481. doi: 10.13801/j.cnki.fhclxb.20191224.002
Citation: ZHAO Sheng, ZHANG Jiwen. A derivative fatigue damage model based on residual strength of composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2473-2481. doi: 10.13801/j.cnki.fhclxb.20191224.002

一种基于复合材料剩余强度的衍生疲劳损伤模型

doi: 10.13801/j.cnki.fhclxb.20191224.002
基金项目: 国家重点研发计划(2017YFC0703006-01);国家自然科学基金(51378104)
详细信息
    通讯作者:

    张继文,教授,博士生导师,研究方向为土木工程领域FRP应用技术、防灾减灾及防护工程 E-mail:jiwenzhang_seu@hotmail.com

  • 中图分类号: TB332

A derivative fatigue damage model based on residual strength of composites

  • 摘要: 为了研究纤维增强树脂复合材料在疲劳载荷作用下的损伤发展规律,提出了一种基于复合材料剩余强度的归一化衍生疲劳损伤模型。在该模型中,假定累积损伤与应力水平呈线性关系,可以由拉-拉疲劳试验的应力水平的损伤曲线衍生出未试验的应力水平的损伤曲线。对直径为8 mm的碳纤维增强树脂复合材料(CFRP)索材进行了不同应力幅的疲劳试验,并同时采用了文献中玻璃纤维增强树脂复合材料(GFRP)层合板的试验数据验证模型的可靠性,试验结果表明:损伤模型能较好地反映出三阶段的发展规律,衍生的损伤曲线与试验数据拟合出来的损伤曲线偏离度较小。此外,本文还研究了应力水平对复合材料损伤演化的影响,结果表明随着应力水平的增大,损伤曲线相邻阶段的边界变得不明显。

     

  • 图  1  参数对复合材料疲劳损伤曲线的影响

    Figure  1.  Influence of parameters on shape of the proposed model for composites

    图  2  复合材料损伤曲线的衍生示意图

    Figure  2.  Derivation of damage curves of composites

    图  3  夹片式锚固系统示意图

    Figure  3.  Schematic diagram of wedge-type anchorage system

    图  4  Instron 8800疲劳试验机

    Figure  4.  Fatigue testing machine Instron 8800

    图  5  碳纤维增强树脂复合材料(CFRP)复合材料索材的拉伸破坏

    Figure  5.  Tensile failure of carbon fiber reinforced polymer(CFRP) composite tendon

    图  6  三组复合材料试验的损伤曲线及损伤速率

    Figure  6.  Damage curves and damage development rates of three test composite specimens

    表  1  CFRP复合材料试件的力学性能

    Table  1.   Mechanical properties of CFRP composite specimens

    MaterialLongitudinal modulus/GPa Tensile strength/MPa
    CFRP tendon 159.0 2 103.9
    GFRP laminate I[1] 24.8 448
    GFRP laminate II[13] 25.2 333
    下载: 导出CSV

    表  2  本文模型中相关参数值

    Table  2.   Parameter values of the presented model

    MaterialStress level $ \sigma $/MPaNf/cycleabR2
    CFRP tendon ${ {\sigma }_{ {\rm{m} }{\rm{a} }{\rm{x} } }=0.6{\sigma }_{ {\rm{u} } },\sigma }_{{\rm{a}}}=900$ 6 895 0.996 −0.071 0.959
    ${ {\sigma }_{ {\rm{m} }{\rm{a} }{\rm{x} } }=0.6{\sigma }_{ {\rm{u} } },\sigma }_{{\rm{a}}}=800$ 7 654 0.868 −0.339 0.902
    ${ {\sigma }_{ {\rm{m} }{\rm{a} }{\rm{x} } }=0.6{\sigma }_{ {\rm{u} } },\sigma }_{{\rm{a}}}=600$ 13 758 0.751 −0.614 0.943
    ${ {\sigma }_{ {\rm{m} }{\rm{a} }{\rm{x} } }=0.6{\sigma }_{ {\rm{u} } },\sigma }_{{\rm{a}}}=500$ 32 558 0.586 −0.451 0.968
    GFRP laminate Ⅰ[1] $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=386,R=0.05 $ 493 0.22487 −2.478 0.999
    $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=338,R=0.05 $ 2 471 0.69607 −1.417 0.999
    $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=290,R=0.05 $ 14 706 0.63714 −1.096 0.999
    $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=241,R=0.05 $ 172 186 0.40554 −1.996 0.999
    GFRP laminate Ⅱ[13] $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=174,R=0.1 $ 11 162 0.714 −1.213 0.998
    $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=147,R=0.1 $ 44 010 0.637 −1.390 0.997
    $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}}=120,R=0.1 $ 377 012 0.582 −1.999 0.989
    Notes:${N}_{{\rm{f}}}$—Fatigue life of FRP specimens; $ {\sigma }_{{\rm{m}}{\rm{a}}{\rm{x}}} $—Peak stress of fatigue loading; $ {\sigma }_{{\rm{u}}} $—Ultimate strength of FRP specimens; ${\sigma }_{{\rm{a}}}$—Stress amplitude of fatigue loading; $ R $—Stress ratio; a, b—Relevant parameters of the proposed model; R2—Correlation coefficient.
    下载: 导出CSV

    表  3  对CFRP复合材料拉-拉疲劳试验损伤曲线的预测值与拟合值的比较($ {\sigma }_{{\rm{a}}} $=800 MPa)

    Table  3.   Comparison of predicted results and fitting results of tension-tention fatigue damage curve for CFRP composite ($ {\sigma }_{{\rm{a}}} $=800 MPa)

    n/NfPrediction of
    900-500 MPa
    Prediction of
    900-600 MPa
    Damage
    curve
    Deviation
    (900-500 MPa)/ %
    Deviation
    (900-600 MPa)/ %
    0.1959 0.2358 0.2185 0.2292 2.89 4.70
    0.2613 0.2982 0.2793 0.2897 2.97 3.57
    0.3266 0.3585 0.3380 0.3467 3.40 2.50
    0.3919 0.4173 0.3952 0.4013 3.99 1.52
    0.5879 0.5895 0.5624 0.5577 5.70 0.84
    0.7839 0.7638 0.7336 0.7194 6.17 1.97
    0.9145 0.8905 0.8636 0.8509 4.65 1.49
    0.9861 0.9747 0.9601 0.9577 1.77 0.25
    Notes:n—Number of cycles that have been performed; Prediction of 900-500 MPa is the fatigue damage prediction D(x) derived from damage curves of 900 MPa and 500 MPa; Deviation (900-500 MPa) is the deviation between the fitting value and the prediction value derived from damage curves of 900 MPa and 500 MPa.
    下载: 导出CSV

    表  4  对CFRP复合材料拉-拉疲劳试验损伤曲线的预测值与拟合值的比较($ {\sigma }_{{\rm{a}}} $=600 MPa)

    Table  4.   Comparison of predicted results and fitting results of tension-tention fatigue damage curve for CFRP composite ($ {\sigma }_{{\rm{a}}} $=600 MPa)

    n/NfPrediction of
    900-500 MPa
    Prediction of
    800-500 MPa
    Damage
    curve
    Deviation
    (900-500 MPa)/ %
    Deviation
    (800-500 MPa)/ %
    0.2181 0.3389 0.3365 0.2852 18.84 18.00
    0.3271 0.4321 0.4281 0.3706 16.60 15.53
    0.4361 0.5144 0.5079 0.4446 15.70 14.25
    0.5815 0.6163 0.6058 0.5354 15.11 13.16
    0.6542 0.6664 0.6540 0.5807 14.76 12.63
    0.7433 0.7295 0.7152 0.6397 14.04 11.81
    0.8722 0.8310 0.8164 0.7439 11.70 9.75
    0.9813 0.9524 0.9457 0.9029 5.48 4.74
    下载: 导出CSV

    表  5  对CFRP复合材料拉-拉疲劳试验损伤曲线的预测值与拟合值的比较($ {\sigma }_{{\rm{a}}} $=338 MPa)

    Table  5.   Comparison of predicted results and fitting results of tension-tention fatigue damage curve for CFRP composite ($ {\sigma }_{{\rm{a}}} $=338 MPa)

    n/NfPrediction of
    386-241 MPa
    Prediction of
    386-290 MPa
    Damage
    curve
    Deviation
    (386-241 MPa)/ %
    Deviation
    (386-290 MPa)/ %
    0.2 0.4743 0.4071 0.2572 84.42 58.28
    0.4 0.4462 0.4368 0.3472 28.52 25.83
    0.6 0.3957 0.4401 0.4028 1.75 9.26
    0.8 0.3571 0.4544 0.4641 23.07 2.11
    0.9 0.3579 0.4851 0.5228 31.54 7.21
    下载: 导出CSV

    表  6  对CFRP复合材料拉-拉疲劳试验损伤曲线的预测值与拟合值的比较($ {\sigma }_{{\rm{a}}} $=290 MPa)

    Table  6.   Comparison of predicted results and fitting results of tension-tention fatigue damage curve for CFRP composite ($ {\sigma }_{{\rm{a}}} $=290 MPa)

    n/NfPrediction of
    386-241 MPa
    Prediction of
    338-241 MPa
    Damage
    curve
    Deviation
    (386-241 MPa)/ %
    Deviation
    (338-241 MPa)/ %
    0.2 0.4323 0.3235 0.3001 44.08 7.82
    0.4 0.4280 0.3779 0.4093 4.56 7.66
    0.6 0.3964 0.4000 0.4851 18.28 17.55
    0.8 0.3738 0.4278 0.5688 34.29 24.78
    0.9 0.3833 0.4666 0.6394 40.05 27.03
    下载: 导出CSV

    表  7  对CFRP复合材料拉-拉疲劳试验损伤曲线的预测值与拟合值的比较($ {\sigma }_{{\rm{a}}} $=147 MPa)

    Table  7.   Comparison of predicted results and fitting results of tension-tention fatigue damage curve for CFRP composite ($ {\sigma }_{{\rm{a}}} $=147 MPa)

    n/NfPrediction of
    174-147 MPa
    Damage
    curve
    Deviation
    (174-147 MPa)/ %
    0.1242 0.2189 0.2280 3.99
    0.3854 0.3419 0.3690 7.34
    0.6416 0.3932 0.4369 9.98
    0.7822 0.4257 0.4786 11.05
    0.9012 0.4800 0.5437 11.71
    0.9271 0.5021 0.5691 11.77
    下载: 导出CSV
  • [1] BROUNTMAN L J, SAHU S. A new theory to predict cumulative fatigue damage in fiber glass reinforced plastics[J]. ASTM STP 497,1972:170-188.
    [2] BRUNBAUER J, ARBEITER F, STELZER S, et al. Stiffness based fatigue characterisation of CFRP[J]. Advanced Materials Research,2014,891-892:166-171. doi: 10.4028/www.scientific.net/AMR.891-892.166
    [3] LLOBET J, MAIMÍ P, MAYUGO J A, et al. A fatigue damage and residual strength model for unidirectional carbon/epoxy composites under on-axis tension-tension loadings[J]. International Journal of Fatigue,2017,103:508-515. doi: 10.1016/j.ijfatigue.2017.06.026
    [4] RAFIEE R. Stochastic fatigue analysis of glass fiber reinforced polymer pipes[J]. Composite Structures,2017,167:96-102. doi: 10.1016/j.compstruct.2017.01.068
    [5] STOJKOVIĆ N, FOLIĆ R, PASTERNAK H. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue,2017,103:478-487. doi: 10.1016/j.ijfatigue.2017.06.032
    [6] YANG J N, LIU M D. Residual strength degradation model and theory of periodic proof tests for graphite epoxy laminates[J]. Journal of Composite Materials,1977,11:176-203. doi: 10.1177/002199837701100205
    [7] CHOU P C, CORMAN R. Residual strength in fatigue based on the strength-life equal rank assumption[J]. Journal of Composite Materials,1978,12(2):177-194. doi: 10.1177/002199837801200206
    [8] REVUELTA D, CUARTERO J, MIRAVETE A, et al. A new approach to fatigue analysis in composites based on residual strength degradation[J]. Composite Structures,2000,48(1-3):183-186. doi: 10.1016/S0263-8223(99)00093-8
    [9] CAI D, YIN J, LIU R. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons[J]. Composites Part B: Engineering,2015,79:530-534. doi: 10.1016/j.compositesb.2015.05.014
    [10] WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures,2000,48(4):261-264. doi: 10.1016/S0263-8223(99)00113-0
    [11] CREMONA C. Probabilistic approach for cable residual strength assessment[J]. Engineering Structures,2003,25(3):377-384. doi: 10.1016/S0141-0296(02)00173-6
    [12] PHILIPPIDIS T P, PASSIPOULARIDIS V A. Residual strength after fatigue in composites: Theory vs. experiment[J]. International Journal of Fatigue,2007,29(12):2104-2116. doi: 10.1016/j.ijfatigue.2007.01.019
    [13] POST N L, CAIN J, MCDONALD K J, et al. Residual strength prediction of composite materials: Random spectrum loading[J]. Engineering Fracture Mechanics,2008,75(9):2707-2724. doi: 10.1016/j.engfracmech.2007.03.002
    [14] REIFSNIDER K L, HENNEKE E G, et al. Damage mechanics and NDE of composite laminates[J]. Mechanics of Compo-site Materials, 1983: 399-420.
    [15] YAO W X, HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology,2000,60(1):59-64. doi: 10.1016/S0266-3538(99)00100-1
    [16] 中华人民共和国国家质量监督检验检疫总局. 结构工程用纤维增强复合材料筋规范: GB/T26743-2011[S], 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for fiber reinforced composite materials used in structural engineering: GB/ T26743—2011[S]. Beijing: China Standards Press, 2011(in Chinese).
    [17] American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials[S]. West Conshohocken: ASTM, 2017.
    [18] American Society for Testing and Materials. Standard test method for tension-tension fatigue of polymer matrix composite materials[S]. West Conshohocken: ASTM, 2012.
    [19] OWEN M J, HOWE R J. The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading[J]. Journal of Physics D: Applied Physics,1972,5(9):1637-1649. doi: 10.1088/0022-3727/5/9/319
    [20] 邱爽, 周金宇. 不同应力水平对碳纤维复合材料疲劳剩余刚度的影响[J]. 航空材料学报, 2018, 38(2):110-117. doi: 10.11868/j.issn.1005-5053.2017.000076

    QIU S, ZHOU J Y. Effects of different fatigue stress levels on residual stiffness of carbon fiber composites[J]. Journal of Aeronautical Materials,2018,38(2):110-117(in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000076
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  394
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-12
  • 网络出版日期:  2019-12-24
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回