留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型

张扬 曹玉贵 胡志礼

张扬, 曹玉贵, 胡志礼. 基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型[J]. 复合材料学报, 2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002
引用本文: 张扬, 曹玉贵, 胡志礼. 基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型[J]. 复合材料学报, 2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002
ZHANG Yang, CAO Yugui, HU Zhili. Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002
Citation: ZHANG Yang, CAO Yugui, HU Zhili. Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002

基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型

doi: 10.13801/j.cnki.fhclxb.20191223.002
基金项目: 国家自然科学基金(51808419);中国博士后科学基金(2017M622540);湖北省重大专项研发计划(2018AAA001);武汉理工大学自主创新基金(2018IAV008; 2019IVB064; 2019IVA089)
详细信息
    通讯作者:

    曹玉贵,博士,副研究员,研究方向为FRP约束混凝土 E-mail:yuguicao@whut.edu.cn

  • 中图分类号: TU375

Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete

  • 摘要: 纤维增强聚合物复合材料(FRP)约束混凝土的抗压强度是进行FRP加固混凝结构设计的重要参数。现有的FRP约束混凝土柱抗压强度模型大部分采用试验数据回归分析获得,只有极少数模型基于理论推导建立,因此有必要对基于理论推导建立的抗压强度模型进行扩展。本文通过对现有的FRP约束混凝土柱的抗压强度模型进行归纳和总结,并采用已发表文献的大量试验数据对其进行评估。然后基于Griffith破坏准则,提出一个可以同时预测FRP约束未损伤混凝土和损伤混凝土抗压强度统一模型并进行评估。评估结果表明,新建立的抗压强度模型可以较准确地预测FRP约束未损伤混凝土和损伤混凝土的抗压强度。

     

  • 图  1  FRP约束混凝土的应力-应变曲线[11]

    Figure  1.  Stress-strain curves of FRP-confined concrete[11]

    图  2  FRP约束未损伤混凝土抗压强度经验模型的评估结果

    Figure  2.  Performance of empirical strength models of FRP-confined undamaged concrete

    图  3  FRP约束未损伤混凝土抗压强度理论模型的评估结果

    Figure  3.  Performance of theoretical strength models of FRP-confined undamaged concrete

    图  4  岩石内部裂纹方向及受力示意图

    Figure  4.  Micro-crack direction and force diagram of rock

    图  5  Griffith破坏准则

    Figure  5.  Griffith failure criterion

    图  6  新提出FRP约束未损伤混凝土抗压强度模型的评估结果

    Figure  6.  Performance of proposed compressive strength model of FRP-confined undamaged concrete

    图  7  新提出FRP约束损伤混凝土抗压强度模型的评估结果

    Figure  7.  Performance of proposed compressive strength model of FRP-confined damaged concrete

    图  8  新提出FRP约束损伤混凝土抗压强度模型的应用

    Figure  8.  Application of proposed strength model of FRP-confined fire-damaged concrete

    表  1  典型的FRP约束混凝土柱抗压强度模型和评估结果

    Table  1.   Typical strength model of FRP-confined concrete and its evaluation results

    Strength modelEquation for fcc/fcoAE
    Matthys et al.[15]$1 + 2.3{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{0.85}}$1.0800.168
    Mirmiran et al.[16]$1 + 4.269\left( {{{f_{\rm{l}}^{0.587}} / {{f_{{\rm{co}}}}}}} \right)$0.8400.319
    Kumutha et al.[17]$1 + 0.93\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$0.7680.359
    Karabinis et al.[20]$1 + 2.1{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{0.87}}$1.0290.181
    Lam et al.[21]$1 + 3.3\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$0.9780.173
    Spoelstra et al.[24]$0.2 + 3.0{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{0.5}}$1.0240.188
    Fardis et al.[19]$1 + 4.1\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$1.3480.328
    Samaan et al.[22]$1 + 6.0\left( {{{f_{\rm{l}}^{0.7}} / {{f_{{\rm{co}}}}}}} \right)$1.0640.170
    Campione et al.[18]$1 + 2.0\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$0.9640.183
    Shehata et al.[23]$1 + 1.25\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$0.8260.301
    Youssef et al.[25]$1 + 2.25{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{1.25}}$0.9370.157
    Wu et al.[14]$1 + 2.2{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{0.94}}$1.0220.164
    Wu et al.[11]$1 + 3.96{\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)^{1.13}}$1.2500.264
    Wang[27]$1 + 3.2\left( {{{{f_{\rm{l}}}} / {{f_{{\rm{co}}}}}}} \right)$1.1840.157
    Notes: fcc—FRP-confined compressive strength; fco—Strength of concrete; fl—Confinement pressure of FRP; A, E—Calculated by eq.(6) and eq.(7), respectively.
    下载: 导出CSV

    表  2  FRP约束未损伤混凝土柱的数据

    Table  2.   Database of FRP-confined concrete columns

    ReferenceD/mmFRP typeEFRP/GPatFRP/mmfco/MPa
    Almusallam[33]150GFRP271.3–3.948–108
    Cui[34]152GFRP, CFRP22, 85–4361.25–5, 0.111–346–112
    Karabinis et al.[10]200CFRP2400.117~0.35135–40
    Lam et al.[35]152CFRP, GFRP25, 9220.165–0.495, 1.24–2.5434–39
    Akogbe et al.[36]100–300CFRP2420.167~0.50121–28
    Wu et al.[37]150CFRP2420.167~0.83521–37
    Guo et al.[9]150CFRP2190.167~0.50146–70
    Notes: D—Diameter of circular column; EFRP—Elastic modulus of FRP; tFRP—Thickness of FRP.
    下载: 导出CSV

    表  3  FRP约束损伤混凝土柱的数据

    Table  3.   Database of FRP-confined damaged concrete columns

    ReferenceD/mmFRP typeEFRP/GPatFRP/mmfco/MPaδ/%
    Wu et al.[11]150CFRP2350.167–0.33429–500–58
    Guo et al.[9]150CFRP2190.167–0.50146–708–21
    Ma et al.[38]150BFRP700.126–0.630380–27
    Cui[34]152GFRP, CFRP2285–4361.250–3.750, 0.111–3.0046–482
    Note: δ—Degree of damage of concrete[11]and calculated by eq.(5).
    下载: 导出CSV
  • [1] CAO Y G, WU Y F, LI X Q. Unifie model for evaluating ultimate strain of FRP confined concrete based on energy method[J]. Construction and Building Materials,2016,103:23-35. doi: 10.1016/j.conbuildmat.2015.11.042
    [2] 徐扬, 魏洋, 程勋煜, 等. 碳纤维-箍筋约束倒角矩形混凝土柱的轴压性能[J]. 玻璃钢/复合材料, 2019(6):5-11. doi: 10.3969/j.issn.1003-0999.2019.06.001

    XU Yang, WEI Yang, CHENG Xunyu, et al. Axial compressive behavior of CFRP-stirrup confined rounded rectangular concrete[J]. Fiber Reinforced Plastics/Composites,2019(6):5-11(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.001
    [3] 魏洋, 吴刚, 吴智深, 等. FRP强约束混凝土矩形柱应力-应变关系的研究[J]. 建筑结构, 2007, 37(12):75-78.

    WEI Yang, WU Gang, WU Zhishen, et al. Study on stress-strain relationship for concrete rectangular columns sufficiently confined with FRP[J]. Building Structure,2007,37(12):75-78(in Chinese).
    [4] 张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Models for predicting axial compression behavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [5] WEI Y, ZHANG X, WU G, et al. Behaviour of concrete confined by both steel spirals and fiber-reinforced polymer under axial load[J]. Composite Structures,2018,192:577-591. doi: 10.1016/j.compstruct.2018.03.041
    [6] CAO Y G, JIANG C, WU Y F. Cross-setional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer[J]. Polymers,2016,8(5):8050186. doi: 10.3390/polym8050186
    [7] DALGIC K D, ISPIR M, ILKI A. Cyclic and monotonic compression behavior of CFRP-jacketed damaged noncircular concrete prisms[J]. Journal of Composites for Construction,2016,20(1):04015040. doi: 10.1061/(ASCE)CC.1943-5614.0000603
    [8] FERROTTO M F, FISCHER O, CAVALERI L. Analysis-oriented stress-strain model of CRFP-confined circular concrete columns with applied preload[J]. Materials and Structures,2018,51(2):44.
    [9] GUO Y C, XIE J H, XIE Z H, et al. Experimental study on compressive behavior of damaged normal- and high-strength concrete confined with CFRP laminates[J]. Construction and Building Materials,2016,107:411-425. doi: 10.1016/j.conbuildmat.2016.01.010
    [10] KARABINIS A I, ROUSAKIS T C. Concrete confined by FRP material: A plasticity approach[J]. Engineering Structures,2002,24(7):923-932. doi: 10.1016/S0141-0296(02)00011-1
    [11] WU Y F, YUN Y C, WEI Y Y, et al. Effect of predamage on the stress-strain relationship of confined concrete under monotonic loading[J]. Journal of Structural Engineering,2014,140(12):04014093. doi: 10.1061/(ASCE)ST.1943-541X.0001015
    [12] XIAO Y, WU H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering,2000,12(2):139-146. doi: 10.1061/(ASCE)0899-1561(2000)12:2(139)
    [13] JIANG J F, WU Y F. Characterization of yield surfaces for FRP-confined concrete[J]. Journal of Engineering Mechanics,2014,140(12):04014096. doi: 10.1061/(ASCE)EM.1943-7889.0000811
    [14] WU Y F, WANG L M. Unified strength model for square and circular concrete columns confined by external jacket[J]. Journal of Structural Engineering,2009,135(3):253-261. doi: 10.1061/(ASCE)0733-9445(2009)135:3(253)
    [15] MATTHYS S, TOUTANJI H, AUDENAERT K, et al. Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites[J]. ACI Structural Journal,2005,102(2):258-267.
    [16] MIRMIRAN A, SHAHAWY M. Behavior of concrete columns confined by fiber composites[J]. Journal of Structural Engineering,1998,123(5):583-590.
    [17] KUMUTHA R, VAIDYANATHAN R, PALANICHAMY M S. Behaviour of reinforced concrete rectan-gular columns strengthened using GFRP[J]. Cement <italic>&</italic> Concrete Composites,2007,29(8):609-615.
    [18] CAMPIONE G, MIRAGLIA N. Strength and strain capacities of concrete compression members reinforced with FRP[J]. Cement <italic>&</italic> Concrete Composites,2003,25(1):31-41.
    [19] FARDIS M N, KHALILI H H. FRP-encased concrete as a structural material[J]. Magazine of Concrete Research,2015,34(121):191-202.
    [20] KARABINIS A I, ROUSAKIS T C. Carbon FRP confined concrete elements under axial load[C]//FRP Composites in Civil Engineering International Conference on FRP Composites in Civil Engineering. Hong Kong: Elsevier, 2001: 309-316.
    [21] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17(6-7):471-489. doi: 10.1016/S0950-0618(03)00045-X
    [22] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering,1998,124(9):1025-1031. doi: 10.1061/(ASCE)0733-9445(1998)124:9(1025)
    [23] SHEHATA I A E M, CARNEIRO L A V, SHEHATA L C D. Strength of short concrete columns confined with CFRP sheets[J]. Materials <italic>&</italic> Structures,2002,35(1):50-58.
    [24] SPOELSTRA M R, MONTI G. FRP-confined concrete model[J]. Journal of Composites for Costruction,1999,3(3):143-150. doi: 10.1061/(ASCE)1090-0268(1999)3:3(143)
    [25] YOUSSEF M N, FENG M Q, MOSALLAM A S. Stress-strain model for concrete confined by FRP composites[J]. Composites Part B: Engineering,2005,38(5-6):614-628.
    [26] WU Y F, WEI Y. General stress-strain model for steel- and FRP-confined concrete[J]. Journal of Composites for Construction,2014,19(4):04014069.
    [27] 王元丰. AFRP约束混凝土柱性能理论[M]. 北京: 科学出版社, 2011:13-16.

    WANG Yuanfeng. AFRP confined concrete column performance theory[M]. Beijing: Science Press, 2011:13-16(in Chinese).
    [28] RICHART F E, BRANDTZAEG A, BROWN R L. A study of the failure of concrete under combined compressive stresses[J]. University of Illinois Bulletin,1928,26(12):185.
    [29] TENG J G, HUANG Y L, YE L P. Theoretical model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction,2007,11(2):201-210. doi: 10.1061/(ASCE)1090-0268(2007)11:2(201)
    [30] WU Y F, ZHOU Y W. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP[J]. Journal of Composites for Construction,2010,14(2):175-184. doi: 10.1061/(ASCE)CC.1943-5614.0000062
    [31] 敬登虎. 基于混凝土三轴破坏准则下FRP约束矩形柱的应力-应变模型[J]. 四川建筑科学研究, 2008, 34(2):62-66. doi: 10.3969/j.issn.1008-1933.2008.02.018

    JING Denghu. A model on stress-strain of rectangular column confined by FRP based on concrete failure rule under three axial compressions[J]. Sichuan Building Science,2008,34(2):62-66(in Chinese). doi: 10.3969/j.issn.1008-1933.2008.02.018
    [32] 尤明庆. 完整岩石的强度和强度准则[J]. 复旦学报(自然科学版), 2013, 52(5):569-582.

    YOU Mingqing. Strength and strength criteria for intact rocks[J]. Journal of Fudan University(Natural Science),2013,52(5):569-582(in Chinese).
    [33] ALMUSALLAM T H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates[J]. Composites Part B: Engineering,2007,38(5-6):629-639.
    [34] CUI C Y. Behaviour of normal and high strength concrete confined with fibre reinforced polymers (FRP)[D]. Canada: University of Toronto, 2009.
    [35] LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction,2004,8(6):539-548. doi: 10.1061/(ASCE)1090-0268(2004)8:6(539)
    [36] AKOGBE R K, LIANG M, WU Z M. Size effect of axial compressive strength of CFRP con-fined concrete cylinders[J]. International Journal of Concrete Structures <italic>&</italic> Materials,2011,5(1):49-55.
    [37] WU Y F, JIANG J F. Effective strain of FRP for confined circular concrete columns[J]. Composite Structures,2013,95(1):479-491.
    [38] MA G, LI H, YAN L B, et al. Testing and analysis of basalt FRP-confined damaged concrete cylinders under axial compression loading[J]. Construction and Building Materials,2018,169:762-774. doi: 10.1016/j.conbuildmat.2018.02.172
    [39] WU G, LYU Z T, WU Z S. Strength and ductility of concrete cylinders confined with FRP composites[J]. Construction and Building Materials,2006,20(3):134-148.
    [40] WU Y F, JIANG C. Effect of load eccentricity on the stress-strain relationship of FRP-confined concrete columns[J]. Composite Structures,2013,98:228-241. doi: 10.1016/j.compstruct.2012.11.023
    [41] LIM J C, OZBAKKALOGLU T. Lateral strain-to-axial strain relationship of confined concrete[J]. Journal of Structural Engineering,2014,141(5):04014141.
    [42] BISBY L A, CHEN J F, LI S Q, et al. Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps[J]. Engineering Structures,2011,33(12):3381-3391. doi: 10.1016/j.engstruct.2011.07.002
    [43] 郭永昌, 钟健, 谢建和, 等. 碳纤维增强复合材料约束高温损伤高强混凝土轴压力学性能的试验研究[J]. 工业建筑, 2014, 44(10):1-5.

    GUO Yongchang, ZHONG Jian, XIE Jianhe, et al. Experimental study of axial compressive behavior of CFRP-confined high-strength concrete damaged by high temperature[J]. Industrial Construction,2014,44(10):1-5(in Chinese).
    [44] LENWARI A, RUNGAMORNRAT J, WOONPRASERT S. Axial compression behavior of fire-damaged concrete cylinders confined with CFRP sheets[J]. Journal of Composites for Construction,2016,20(5):04016027. doi: 10.1061/(ASCE)CC.1943-5614.0000683
    [45] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9):158-166. doi: 10.6052/j.issn.1000-4750.2016.05.0348

    LIU Jingya, HUO Jingsi, LIU Yanzhi. Experimental study on the mechanical performance of post-fire concrete confined by CFRP sheets[J]. Engineering Mechanics,2017,34(9):158-166(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.05.0348
    [46] 欧阳利军, 许峰, 陆洲导. 玄武岩纤维布增强树脂基复合材料约束高温损伤混凝土轴压力学性能[J]. 复合材料学报, 2018, 35(8):2002-2013.

    OUYANG Lijun, XU Feng, LU Zhoudao. Axial compressive behavior of basalt fiber reinforced polymer-confined damaged concrete after exposed to elevated temperatures[J]. Acta Materiae Compositae Sinica,2018,35(8):2002-2013(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  272
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2019-12-06
  • 网络出版日期:  2019-12-23
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回