留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCp/Al复合材料微弧氧化膜的组织结构及性能

杜春燕 黄树涛 于晓琳 王全兆 赵晖

杜春燕, 黄树涛, 于晓琳, 等. SiCp/Al复合材料微弧氧化膜的组织结构及性能[J]. 复合材料学报, 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001
引用本文: 杜春燕, 黄树涛, 于晓琳, 等. SiCp/Al复合材料微弧氧化膜的组织结构及性能[J]. 复合材料学报, 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001
DU Chunyan, HUANG Shutao, YU Xiaolin, et al. Microstructure and properties of micro-arc oxidation film on SiCp/Al matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001
Citation: DU Chunyan, HUANG Shutao, YU Xiaolin, et al. Microstructure and properties of micro-arc oxidation film on SiCp/Al matrix composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1960-1968. doi: 10.13801/j.cnki.fhclxb.20191223.001

SiCp/Al复合材料微弧氧化膜的组织结构及性能

doi: 10.13801/j.cnki.fhclxb.20191223.001
基金项目: 辽宁省特聘教授资助项目
详细信息
    通讯作者:

    黄树涛,博士,教授,博士生导师,研究方向为难加工材料与复合材料精密高效加工 E-mail:syithst@163.com

  • 中图分类号: TB331

Microstructure and properties of micro-arc oxidation film on SiCp/Al matrix composites

  • 摘要: 采用微弧氧化技术对SiC体积分数分别为17vol%和55vol%的两种SiCp/Al复合材料进行处理。分析了两种材料微弧氧化膜的组织、形貌、相组成,测定了膜层的粗糙度、显微硬度、结合力,考察了膜层的耐磨和耐蚀性。结果表明:SiC的含量对SiCp/Al复合材料微弧氧化膜的表面形貌、粗糙度、相组成、结合力及摩擦磨损性能均有影响。17vol%SiCp/2009Al复合材料的微弧氧化膜较55vol%SiCp/6061Al复合材料更平整,微孔大小更均匀。55vol%SiCp/6061Al复合材料的微弧氧化膜的粗糙度(3.308 μm)比17vol%SiCp/2009Al复合材料(2.140 μm)大,表面熔融物堆积更多。两种材料的微弧氧化膜中均含有Al、Si、O、C、W等元素。55vol%SiCp/6061Al复合材料的微弧氧化膜中Mullite(SiO2-Al2O3)相、α-Al2O3相、β-Al2O3相较多。17vol%SiCp/2009Al复合材料的微弧氧化膜的结合(38.55 N)较55vol%SiCp/6061Al(11.5 N)复合材料好。55vol%SiCp/6061Al复合材料的微弧氧化膜摩擦系数较大,磨损较严重。微弧氧化处理能有效改善两种SiCp/Al复合材料的耐蚀性。

     

  • 图  1  SiCp/Al复合材料的显微组织

    Figure  1.  Microstructures of SiCp/Al composites

    图  2  SiCp/Al复合材料微弧氧化膜的表面形貌

    Figure  2.  Surface morphologies of micro-arc oxidation films of SiCp/Al composites

    图  3  SiCp/Al复合材料微弧氧化膜表面的EDS能谱

    Figure  3.  EDS spectra of micro-arc oxidation films surface on SiCp/Al composites

    图  4  SiCp/Al复合材料微弧氧化膜的横截面形貌及元素分布

    Figure  4.  Cross-section morphologies and element distributionsof micro-arc oxidation film on SiCp/Al composite

    图  5  SiCp/Al复合材料微弧氧化膜的XRD图谱

    Figure  5.  XRD patterns of micro-arc oxidation films on SiCp/Al composites

    图  6  SiCp/Al复合材料微弧氧化膜层结合力

    Figure  6.  Binding force of micro-arc oxidation film of SiCp/Al composite

    图  7  SiCp/Al复合材料基体和微弧氧化膜磨痕形貌

    Figure  7.  Wear scar morphologies of SiCp/Al composites and micro-arc oxidation films

    图  8  SiCp/Al复合材料基体和微弧氧化膜的极化曲线

    Figure  8.  Polarization curves of SiCp/Al composites and micro-arc oxidation films

    表  1  SiCp/Al复合材料基体和微弧氧化膜的摩擦系数和体积磨损率

    Table  1.   Friction coefficients and volume wear rates of SiCp/Al composites and micro-arc oxidation films

    SampleFriction coefficientWear track width/μmWear trackdepth/μmWear rate/(mm(N·m)−1)
    17vol%SiCp/2009Al 0.45-0.90 855.02 23.41 1.10×10−3
    55vol%SiCp/6061Al 0.05-0.25 575.57 6.23 1.72×10−5
    17vol%SiCp/2009Al-film 0.20-0.70 827.33 15.27 1.06×10−4
    55vol%SiCp/6061Al-film 0.80-1.60 839.25 19.97 1.14×10−4
    下载: 导出CSV

    表  2  SiCp/Al复合材料基体和微弧氧化膜的极化曲线计算结果

    Table  2.   Polarization results of SiCp/Al composites and micro-arc oxidation films

    SampleErosion potential Ecorr/VErosion current Icorr/(A·cm−2)
    17vol%SiCp/2009Al −0.901 1.166×10−6
    17vol%SiCp/2009Al-film −0.763 1.051×10−6
    55vol%SiCp/6061Al −0.687 1.458×10−6
    55vol%SiCp/6061Al-film −0.745 5.122×10−7
    下载: 导出CSV
  • [1] 崔岩. 碳化硅颗粒增强铝基复合材料的航空航天应用[J]. 材料工程, 2002(6):3-6. doi: 10.3969/j.issn.1001-4381.2002.06.001

    CUI Yan. Aerospace application of Silicon carbide particulate reinforced aluminium matrix composites[J]. Journal of Materials Engineering,2002(6):3-6(in Chinese). doi: 10.3969/j.issn.1001-4381.2002.06.001
    [2] 李明伟. 颗粒增强铝基复合材料的研究与应用[J]. 热加工工艺, 2009(08):69-72. doi: 10.3969/j.issn.1001-3814.2009.08.021

    LI Mingwei. Research and application of particle reinforced aluminium matrix composite[J]. Hot Working Technology,2009(08):69-72(in Chinese). doi: 10.3969/j.issn.1001-3814.2009.08.021
    [3] 康炘蒙, 程小全, 张纪奎, 等. 高体积分数SiCp/Al复合材料的拉伸、压缩与弯曲特性[J]. 复合材料学报, 2008, 25(3):127-131. doi: 10.3321/j.issn:1000-3851.2008.03.022

    KANG Xinmeng, CHENG Xiaoquan, ZHANG Jikui, et al. Tensile, compressive and flexible properties of high volume fraction SiCP/Al composites[J]. Acta Materiae Compositae Sinica,2008,25(3):127-131(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.022
    [4] CHAN K C, CHEUNG C F, RAMESH M V, et al. A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix compo-site[J]. Mechanical Sciences,2001,43:2047-2068. doi: 10.1016/S0020-7403(01)00028-5
    [5] 万春锋. 无压浸渗法制备SiCp/Al复合材料强度和耐磨性的研究[D]. 西安: 长安大学, 2006.

    WAN Chunfeng. A study on the bending strength and wear resistance of SiC/Al composites by pressureless infiltration[J]. Xi'an: Chang’an University, 2006 (in Chinese).
    [6] 韩桂泉, 胡喜兰, 李京伟. 无压浸渗制备结构/功能一体化铝基复合材料的性能及应用[J]. 航空制造技术, 2006(1):95-97. doi: 10.3969/j.issn.1671-833X.2006.01.019

    HU Guiquan, Hu Xilan, Li Jingwei. Property an application of the structure/function integration aluminium matrix composite prepared by pressureless pndiltration[J]. Aeronautical Manufacturing Technology,2006(1):95-97(in Chinese). doi: 10.3969/j.issn.1671-833X.2006.01.019
    [7] YEROKHIN A L, NIE X, LEYLAND A, et al. Characterization of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy[J]. Surface and Coatings Technology,2000,130(2-3):195-206. doi: 10.1016/S0257-8972(00)00719-2
    [8] YANG L J. The effect of nominal specimen contact area on the wear coefficient of A6061 aluminium matrix composite reinforced with alumina particles[J]. Wear,2007,263(7-12):939-948. doi: 10.1016/j.wear.2006.12.004
    [9] ZHANG P, LI F G. Effect of particle characteristics on deformation of particle reinforced metal matrix composites[J]. Transactions of Nonferrous Metals Society of China,2010,20(4):655-661. doi: 10.1016/S1003-6326(09)60194-1
    [10] SONG L W, SONG Y W, SHAN D Y, et al. Product/metal ratio (PMR): A novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys[J]. Science China: Technological Sciences,2011,54(10):2795-2801. doi: 10.1007/s11431-011-4502-1
    [11] ARRABAL R, MATYKINA E, HASHIMOTO T, et al. Characterization of AC PEO coatings on magnesium alloys[J]. Surface and Coatings Technology,2009,203(16):2207-2220. doi: 10.1016/j.surfcoat.2009.02.011
    [12] CIMENOGLU H, GUNYUZ M, KOSE G T, et al. Micro-arc oxidation of Ti-6Al-4V and Ti6Al7Nb alloys for biomedical applications[J]. Materials Characterization,2011,62(3):304-311. doi: 10.1016/j.matchar.2011.01.002
    [13] MELHEM A, HENRION G, CZERWIEC T, et al. Changes induced by process parameters in oxide layers grown by the PEO process on Al alloys[J]. Surface and Coatings Technology,2011,205(2):133-136.
    [14] 王亚明, 邹永纯, 王树棋, 等. 金属微弧氧化功能陶瓷涂层设计制备与使役性能研究进展[J]. 中国表面工程, 2018, 31(4):20-45. doi: 10.11933/j.issn.1007-9289.20180604001

    WANG Yaming, ZOU Yongchun, WANG Shuqi. et al. Design, fabrication and performance of multifuctional ceramic coatings formed by microarc oxidation on metals: A critial review[J]. China Surface Engineering,2018,31(4):20-45(in Chinese). doi: 10.11933/j.issn.1007-9289.20180604001
    [15] 黎辉常, 王森林, 叶俊辉, 等. 铝合金微弧氧化工艺的研究进展[J]. 材料保护护, 2018, 51(6):92-99.

    LI Huichang, WANG Senlin, YE Junhui, et al. Reseach process of micro-arc oxidation technique on aluminum alloy[J]. Mateials protection,2018,51(6):92-99(in Chinese).
    [16] 陈刚, 郑顺奇, 王斌锋. 镁合金表面微弧氧化耐蚀膜层研究与应用进展[J]. 兵器材料科学与工程, 2018, 41(5): 115-118.

    CHEN Gang, ZHENG Shunqi, WANG Binfeng. Research and application of micro-arc oxidation corrosion resistant coating on magnesium alloy[J]. 2018, 41(5): 115−118 (in Chinese).
    [17] 张瑞珠, 韩林萍, 唐明奇, 等. 钛合金微弧氧化陶瓷层及其复合膜层研究进展[J]. 人工晶体学报, 2018, 40(1):219-230. doi: 10.3969/j.issn.1000-985X.2018.01.036

    ZHANG Ruizhu, HAN Linping, TANG Mingqi, et al. Research progress of micro arc oxidation ceramic coatings and composite coatings on titanium alloy[J]. Journal of Synthetic Crystals,2018,40(1):219-230(in Chinese). doi: 10.3969/j.issn.1000-985X.2018.01.036
    [18] 薛文斌, 金乾, 朱庆振, 等. SiCp/AZ31镁基复合材料微弧氧化膜结构与性能分析[J]. 无机材料学报, 2009, 24(3):612-616. doi: 10.3724/SP.J.1077.2009.00612

    XUE Wenbin, JIN Qian, ZHU Qingzhen, et al. Structure and properties of micro-arc oxidation coatings on SiCp/AZ31magnesium matrix composite[J]. Journal of Inorganic Materials,2009,24(3):612-616(in Chinese). doi: 10.3724/SP.J.1077.2009.00612
    [19] 杨艳, 穆耀钊, 孙长涛, 等. 添加剂对铝基复合材料微弧氧化膜层性能的影响[J]. 热加工工艺, 2014, 43(4):150-152.

    YANG Yan, MU Yaozhao, SUN Changtao, et al. Effect of additives on performance of micro-arc oxidation coating on aluminum matrix composite[J]. Hot Working Technology,2014,43(4):150-152(in Chinese).
    [20] 穆耀钊, 杨艳, 李延安, 等. NaF对铝基复合材料微弧氧化膜层生长及性能的影响[J]. 热加工工艺, 2014, 43(10):148-150.

    MU Yaozhao, YANG Yan, LI Yan'an, et al. Effect of NaF on growth and performance of micro-arc oxidation coating on Al-based composite[J]. Hot Working Technology,2014,43(10):148-150(in Chinese).
    [21] 罗军明, 吴小红, 徐吉林. 添加剂对铝基复合材料微弧氧化膜组织及耐蚀性影响[J]. 材料热处理学报, 2015, 36(4):185-188.

    LUO Junming, WU Xiaohong, XU Jilin. Effect of additives on microstructure and corrosion resistance of micro-arc oxidation coatings of aluminum matrix composite[J]. Transactions of Materials and Heat Treatment,2015,36(4):185-188(in Chinese).
    [22] 田华, 薛文斌, 李夕金, 等. 15SiCp/2024铝基复合材料表面微弧氧化膜的摩擦学特性[J]. 硅酸盐学报, 2008, 36(5):636-641. doi: 10.3321/j.issn:0454-5648.2008.05.014

    TIAN Hua, XUE Wenbin, LI Xijin, et al. Tribological preformance of micro-arc oxidation coatings on 15SiCp/2024 aluminum matrix composites[J]. Journal of the Chinese Ceramic Society,2008,36(5):636-641(in Chinese). doi: 10.3321/j.issn:0454-5648.2008.05.014
    [23] LEE J M, KANG S B, HAN J. Dry sliding wear of MAO-coated A356/20% SiCp composites in the temperature range 25-180℃[J]. Wear,2008,264(1-2):75-85.
    [24] 薛文斌, 吴晓玲, 施修龄, 等. SiCp/2024铝基复合材料表面微弧氧化膜组织结构及其耐蚀性[J]. 复合材料学报, 2006, 23(6):98-102. doi: 10.3321/j.issn:1000-3851.2006.06.016

    XUE Wenbin, WU Xuaoling, SHI Xiuling, et al. Microstructure and corrosion-resistance microarc film on SiCp/2024 aluminum matrix composite[J]. Acta Materiae Compositae Sinica,2006,23(6):98-102(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.016
    [25] 唐仕光, 陈泉志, 李少波, 等. 金属复合材料微弧氧化研究进展[J]. 表面技术, 2016, 45(11):23-31.

    TANG Shiguang, CHEN Quanzhi, LI Shaobo, et al. Research progress of micro-arc oxidation on metal composite[J]. Surface Technology,2016,45(11):23-31(in Chinese).
    [26] 王艳秋, 吴昆, 王福会. 第二相对镁基材料微弧氧化过程的影响机制[J]. 金属学报, 2016, 52(6):689-697.

    WANG Yanqiu, WU Kun, WANG Fuhui. Effects of second phases on micro-arc oxidation process of magnesium base materials[J]. Acta Metallurgica Sinica,2016,52(6):689-697(in Chinese).
    [27] 薛文斌. SiC颗粒增强体对铝基复合材料微弧氧化膜生长的影响[J]. 金属学报, 2006, 42(40):350-354.

    XUE Wenbin. Effect of SiCp reinforcement on growth of micro-arc oxidation film on aluminum matrix composite[J]. Acta Metallurgica Sinica,2006,42(40):350-354(in Chinese).
    [28] XUE Wenbin, WU Xiaoling, LI Xijin, et al. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte[J]. Journal of Alloys <italic>&</italic> Compounds,2006,425:302-306. doi: 10.1016/j.jallcom.2006.01.035
    [29] 罗军明, 吴小红, 徐吉林. 电解液组分对TiCp/Ti6Al4V复合材料微弧氧化膜耐蚀性耐磨性影响[J]. 无机材料学报, 2017, 32(4):418-424. doi: 10.15541/jim20160355

    LUO Junming, WU Xiaohong, XU Jilin. Electrolytic composition on wear resistance and corrosion resistance of the micro-arc oxidation coatings on TiCp/Ti6Al4V composites[J]. Journal of Inorganic Materials,2017,32(4):418-424(in Chinese). doi: 10.15541/jim20160355
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  487
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-11-16
  • 网络出版日期:  2019-12-23
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回