留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能

张淑娟 杨婕妤 张翊青 万正睿 周立群 王念贵

张淑娟, 杨婕妤, 张翊青, 等. Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能[J]. 复合材料学报, 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003
引用本文: 张淑娟, 杨婕妤, 张翊青, 等. Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能[J]. 复合材料学报, 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003
ZHANG Shujuan, YANG Jieyu, ZHANG Yiqing, et al. Preparation and electrocatalytic properties of Pd-Sn-Co nanoparticles modified reduced graphene oxide/CuBi2O4 composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003
Citation: ZHANG Shujuan, YANG Jieyu, ZHANG Yiqing, et al. Preparation and electrocatalytic properties of Pd-Sn-Co nanoparticles modified reduced graphene oxide/CuBi2O4 composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1442-1449. doi: 10.13801/j.cnki.fhclxb.20191219.003

Pd-Sn-Co纳米粒子修饰还原氧化石墨烯/CuBi2O4复合材料的制备及电催化性能

doi: 10.13801/j.cnki.fhclxb.20191219.003
基金项目: 湖北省自然科学基金 (2010CDB04701);湖北省教育厅重点项目(D20101011);有机功能分子合成与应用教育部重点实验室项目(2016-KL-007)
详细信息
    通讯作者:

    周立群,教授,研究方向为催化材料 E-mail:zlq@hubu.edu.cn

    王念贵,副教授,研究方向为能源材料 E-mail:nianguiwang@163.com

  • 中图分类号: TB331; O643.3

Preparation and electrocatalytic properties of Pd-Sn-Co nanoparticles modified reduced graphene oxide/CuBi2O4 composites

  • 摘要: 采用水热-浸渍还原法将Pd-Sn-Co纳米粒子固载到氧化石墨烯(GO)/CuBi2O4载体上,成功获得Pd-Sn-Co@还原氧化石墨烯(rGO)/CuBi2O4复合催化剂,并用于碱性介质中乙二醇的电催化氧化。通过比较单金属Pd、双金属Pd-Co、Pd-Sn及三金属Pd-Sn-Co@rGO/CuBi2O4四种负载型催化剂的电催化性能发现,三金属Pd-Sn-Co@rGO/CuBi2O4展现出最高的电催化活性和抗毒能力,其正向峰电流密度达到186.54 mA·cm−2,是商用Pd/C (29.57 mA·cm−2)的6.3倍。这种优良的电氧化性能归功于载体GO/CuBi2O4独特的三维结构为负载金属提供了充足的界面和活性位点及良好分散性的Pd-Sn-Co三金属纳米粒子之间强烈的协同作用,此外,将GO引入到CuBi2O4中有利于多金属纳米粒子的负载并吸附更多的含氧物种,提供优良的电子转移并增大与乙二醇分子的接触面积。这种新型复合材料的制备为发展高效Pd基电催化氧化直接醇类燃料电池提供了新途径,具有较好的理论和应用价值。

     

  • 图  1  载体氧化石墨烯(GO)/CuBi2O4复合材料和相应不同催化剂的XRD图谱

    Figure  1.  XRD patterns of support graphene oxide(GO)/CuBi2O4 composite and various corresponding catalysts

    图  2  GO/CuBi2O4复合材料(a)、Pd-Sn-Co@rGO/CuBi2O4复合材料(b) 的SEM图像和Pd、Sn、Co元素映射图(c)及Pd-Sn-Co@rGO/CuBi2O4复合材料​​​​​​​的EDS图谱(d)

    Figure  2.  SEM images of GO/CuBi2O4 composite (a) and Pd-Sn-Co@rGO/CuBi2O4 composite (b), HAAD-SSEM elemental mapping of Pd, Sn and Co (c) and EDS element distribution of Pd-Sn-Co@rGO/CuBi2O4 composite (d)

    图  3  Pd-Sn-Co@rGO/CuBi2O4复合材料电催化剂的TEM图像(a)和相应的粒径分布(b)

    Figure  3.  TEM image of Pd-Sn-Co@rGO/CuBi2O4 composite electrocatalyst(a) and corresponding particle size distribution(b)

    图  4  Pd-Sn-Co@rGO/CuBi2O4复合材料电催化剂中Pd(a)、Sn(b)、Co(c)的XPS能谱图

    Figure  4.  XPS spectra of Pd(a), Sn(b) and Co(c) in Pd-Sn-Co@rGO/CuBi2O4 composite electrocatalyst

    图  5  四种复合材料电催化剂分别在1 mol/L KOH溶液(a)和1 mol/L KOH + 0.5 mol/L乙二醇溶液中(b)的CV图(扫描速度为50 mV/s)

    Figure  5.  Cyclic voltammograms of four composite electrocatalysts in 1 mol/L KOH (a) and 1 mol/L KOH + 0.5 mol/L ethylene glycol (b) (Scan rate: 50 mV/s)

    图  6  四种复合材料电催化剂在1 mol/L KOH + 0.5 mol/L乙二醇溶液中电位为-0.1 V时连续3 600 s的计时电流曲线

    Figure  6.  Current-time curves of four composite electrocatalysts at -0.1 V for continuous 3 600 s in 1 mol/L KOH + 0.5 mol/L ethylene glycol

    图  7  四种复合材料电催化剂对乙二醇电氧化的交流阻抗谱

    Figure  7.  Impedance spectroscopy of ethylene glycol electrooxidation on four composite electrocatalysts

  • [1] FASHEDEMI O O, MILLER H A, MARCHIONNI A, et al. Electro-oxidation of ethylene glycol and glycerol at palladi-um-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity[J]. Journal of Materials Chemistry A,2015,3(13):7145-7156. doi: 10.1039/C5TA00076A
    [2] KANNAN R, KIM A R, NAHM K S, et al. Manga nesetita-nium-oxide-hydroxide-supported palladium nano structures: A facile electrocatalysts for the methanol, ethylene glycol and xylitol electrooxidation[J]. International Journal of Hydrogen Energy,2016,41(16):6787-6797. doi: 10.1016/j.ijhydene.2016.03.058
    [3] MIYAZAKI K, MATSUMIYA T, ABE T, et al. Electrochem-ical oxidation of ethylene glycol on Pt-based catalysts in al-kaline solutions and quantitative analysis of intermediate products[J]. Electrochimica Acta,2011,56(22):7610-7614. doi: 10.1016/j.electacta.2011.06.078
    [4] WU P, HUANG Y, ZHOU L, et al. Nitrogen-doped graphene supported highly dispersed palladium-lead nanoparticles for synergetic enhancement of ethanol electrooxidation in alkaline medium[J]. Electrochimica Acta,2015,152:68-74. doi: 10.1016/j.electacta.2014.11.110
    [5] XU Y, LIN Z, HUANG X, et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Ad-vanced Materials,2013,25(40):5779-5784. doi: 10.1002/adma.201301928
    [6] TANGBUNSUK S, MEEYING S, VIRAVATHANA P, et al. The effect of metal ratios in graphene-supported PdCoNi anodic electrocatalysts on catalytic property for enhanced methanol electrooxidation[J]. Catalysis Letters,2018,148(11):3292-3308. doi: 10.1007/s10562-018-2550-x
    [7] HE D, CHENG K, PENG T, et al. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability[J]. Journal of Materials Chemistry,2012,22(39):21298-21304. doi: 10.1039/c2jm34290a
    [8] JAHAN M, LIU Z, LOH K P. A graphene oxide and copper-centered metal organic framework composite as a trifunctional catalyst for HER, OER, and ORR[J]. Advanced Functional Materials,2013,23(43):5363-5372. doi: 10.1002/adfm.201300510
    [9] GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Non-covalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews,2016,116(9):5464-5519. doi: 10.1021/acs.chemrev.5b00620
    [10] MOUSSA S, SIAMAKI A R, GUPTON B F, et al. Pd-partially reduced graphene oxide catalysts (Pd/PRGO): Laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions[J]. ACS Catalysis,2011,2(1):145-154.
    [11] YIN H, CAO M L, YU X X, et al. Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance[J]. RSC Ad-vances,2017,7(22):13250-13256. doi: 10.1039/C6RA27216A
    [12] WU R, QIAN X, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A,2013,1(37):11126-11129. doi: 10.1039/c3ta12621h
    [13] LI Y, TRUJILLO M A, FU E, et al. Bismuth oxide: A new lithium-ion battery anode[J]. Journal of Materials Chemistry A,2013,1(39):12123-12127. doi: 10.1039/c3ta12655b
    [14] AREF A A, MUNEERAH A A, SUN D M, et al. Preparation and electrochemical capacitance of MnO2 thin films doped by CuBi2O4[J]. Materials Science in Semiconductor Processing,2015,29:262-271. doi: 10.1016/j.mssp.2014.04.019
    [15] VIVIER V, CACHET-VIVIER C, MEZAILLE S. Electro-chemical study of Bi2O3 and Bi2O2CO3 by means of a cavity microelectrode I. observed phenomena and direct analysis of results[J]. Journal of the Electrochemical Society,2000,147(11):4252-4262. doi: 10.1149/1.1394049
    [16] YAN B, XU H, ZHANG K, LI S, et al. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced per-formances toward ethylene glycol electrooxidation[J]. Applied Surface Science,2018,434:701-710. doi: 10.1016/j.apsusc.2017.10.217
    [17] RAMULIFHO T, OZOEMENA K I, MODIBEDI R M, et al. Electrocatalytic oxidation of ethylene glycol at palladi-um-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes[J]. Journal of Electroanalytical Chemistry,2013,692:26-30. doi: 10.1016/j.jelechem.2012.12.010
    [18] GU Z, XIONG Z, R EN, F, et al. Flower-like PdCu catalyst with high electrocatalytic properties for ethylene glycol oxi-dation[J]. Journal of the Taiwan Institute of Chemical Engi-neers,2018,83:32-39. doi: 10.1016/j.jtice.2017.12.010
    [19] ZHANG S, LIU L, YANG J, et al. Pd-Ru-Bi nanoalloys modified three-dimensional reduced graphene oxide/MOF-199 composites as a highly efficient electrocatalyst for ethylene glycol electrooxidation[J]. Applied Surface Science,2019,492:617-625. doi: 10.1016/j.apsusc.2019.06.228
    [20] HUANG Y, GUO Y, WANG Y. Ethylene glycol electrooxi-dation on core-shell PdCuBi nanoparticles fabricated via substitution and self-adsorption processes[J]. Journal of Power Sources,2014,249:9-12. doi: 10.1016/j.jpowsour.2013.10.083
    [21] MENG X, GENG D, LIU J, et al. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition[J]. Nanotechnology,2011,22(16):165602-165612. doi: 10.1088/0957-4484/22/16/165602
    [22] ZHANG Y C, YANG H, WANG W P, et al. A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route[J]. Journal of Alloys and Compounds,2016,684:707-713. doi: 10.1016/j.jallcom.2016.05.201
    [23] YANG Y, WANG W, LIU Y, et al. Pd nanoparticles sup-ported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation[J]. Electrochimica Acta,2015,154:1-8. doi: 10.1016/j.electacta.2014.12.072
    [24] MA L, HE H, HSU A, et al. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells[J]. Journal of Power Sources,2013,241:696-702. doi: 10.1016/j.jpowsour.2013.04.051
    [25] BHUNIA K, KHILARI S, PRADHAN D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7769-7778.
    [26] WU S, LIU J, LIANG D, et al. Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation[J]. Nano Energy,2016,26:699-707. doi: 10.1016/j.nanoen.2016.06.038
    [27] HAN S, CHAE G S, LEE J S. Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes[J]. Korean Journal of Chemical Engineering,2016,33(6):1799-1804. doi: 10.1007/s11814-016-0015-8
    [28] HUANG Y, GUO Y, WANG Y, et al. Synthesis and perfor-mance of a novel PdCuPb/C nanocatalyst for ethanol elec-trooxidation in alkaline medium[J]. International Journal of Hydrogen Energy,2014,39(9):4274-4281. doi: 10.1016/j.ijhydene.2013.12.176
    [29] XU H, SONG P, FERNANDEZ C, et al. Sophisticated con-struction of binary PdPb alloy nanocubes as robust electro-catalysts toward ethylene glycol and glycerol oxidation[J]. ACS Applied Materials & Interfaces,2018,10(15):12659-12665.
    [30] ARULMANI S, KUMAR P V, LANDI G, et al. Palladi-um/Copper nanoalloy supported on carbon nanotubes for the electrooxidation of methanol and ethylene glycol[J]. Chemistry Select,2019,4(20):6130-6139.
  • 加载中
图(7)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  143
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 录用日期:  2019-11-27
  • 网络出版日期:  2019-12-19
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回