留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真

张兆杭 崔少康 谭志勇 杨振宇 卢子兴

张兆杭, 崔少康, 谭志勇, 等. C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真[J]. 复合材料学报, 2020, 37(8): 1969-1980. doi: 10.13801/j.cnki.fhclxb.20191216.001
引用本文: 张兆杭, 崔少康, 谭志勇, 等. C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真[J]. 复合材料学报, 2020, 37(8): 1969-1980. doi: 10.13801/j.cnki.fhclxb.20191216.001
ZHANG Zhaohang, CUI Shaokang, TAN Zhiyong, et al. Modeling of void defects in C/C-SiC satin weave composites and simulation of their tensile properties[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1969-1980. doi: 10.13801/j.cnki.fhclxb.20191216.001
Citation: ZHANG Zhaohang, CUI Shaokang, TAN Zhiyong, et al. Modeling of void defects in C/C-SiC satin weave composites and simulation of their tensile properties[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1969-1980. doi: 10.13801/j.cnki.fhclxb.20191216.001

C/C-SiC缎纹编织复合材料孔隙缺陷的建模及其拉伸性能仿真

doi: 10.13801/j.cnki.fhclxb.20191216.001
基金项目: 国家自然科学基金 (11972057;11972058)
详细信息
    通讯作者:

    杨振宇,博士,副教授,博士生导师,研究方向为复合材料力学 E-mail:zyyang@buaa.edu.cn

  • 中图分类号: TB330.1

Modeling of void defects in C/C-SiC satin weave composites and simulation of their tensile properties

  • 摘要: 主要研究了随机孔隙缺陷在C/C-SiC缎纹编织复合材料中的有限元建模方法及其对拉伸性能的影响。基于C/C-SiC缎纹编织复合材料的细观结构和实验观察所得的微观形貌,得出孔隙缺陷具有随机分布特征,提出了一种三维随机碰撞算法模拟孔隙在复合材料中的分布,建立了含随机孔隙缺陷的C/C-SiC缎纹编织复合材料的有限元模型。采用有限元软件ABAQUS模拟了其在拉伸载荷下的力学行为,讨论了孔隙缺陷的尺寸和分布形式对材料拉伸性能的影响,并对试样进行了单轴拉伸实验测试,验证了数值模拟的有效性。结果表明,用本文方法建立的有限元模型符合含孔隙缺陷C/C-SiC缎纹编织复合材料的真实细观结构,相应的数值模拟结果也与试验数据吻合较好。本文的研究结果为含孔隙缺陷的缎纹编织复合材料及具有相似结构特征的复合材料的力学分析与优化设计提供了一种有效的方法。

     

  • 图  1  随机碰撞算法流程

    Figure  1.  Flow chart of random collision algorithm

    图  2  二维模型的辅助实体[19]

    Figure  2.  Auxiliary entities of 2D model [19]

    图  3  C/C-SiC编织材料孔隙缺陷的微观形貌

    Figure  3.  Microscopic morphologyies of the void defects in C/C-SiC weave composites

    图  4  C/C-SiC编织复合材料单轴拉伸试样

    Figure  4.  Specimen of the C/C-SiC weave composite under uniaxial tension

    图  5  C/C-SiC编织复合材料单胞的几何模型

    Figure  5.  Geometric model of C/C-SiC weave composite unit-cell

    图  6  C/C-SiC编织复合材料有限元模型中的孔隙缺陷表征

    Figure  6.  Characterization of void defects in finite element model of C/C-SiC weave composite

    图  7  含随机孔隙缺陷的C/C-SiC编织复合材料单胞模型(不含基体)

    Figure  7.  Cell models of C/C-SiC weave composites with random void defects (Without matrix)

    图  8  具有不同敛集率(Vf)的C/C-SiC纱线单胞模型剖面

    Figure  8.  Profiles of C/C-SiC yarn cell models with different pack factors (Vf)

    图  9  具有不同孔隙率(Vp)的C/C-SiC编织复合材料基体几何模型

    Figure  9.  Geometric models of C/C-SiC weave composite matrix with different porosities (Vp)

    图  10  C/C-SiC编织复合材料损伤演化

    Figure  10.  Damage evolution of C/C-SiC weave composites

    图  11  孔隙缺陷体积分数对C/C-SiC编织复合材料应力-应变曲线的影响

    Figure  11.  Effect of the void fraction on tensile stress-strain curves of C/C-SiC weave composites

    图  12  孔隙尺寸对C/C-SiC编织复合材料应力-应变曲线的影响

    Figure  12.  Effect of void sizes on tensile stress-strain curves of C/C-SiC weave composites

    图  13  含孔隙缺陷C/C-SiC编织复合材料数值结果与试验曲线的对比

    Figure  13.  Comparison of numerical results and experimental curves of C/C-SiC satin weave composites with random void defects

    表  1  C/C-SiC编织复合材料的组分材料性能

    Table  1.   Mechanical properties for the C/C-SiC weave composites

    Material${E_1}/{\rm{GPa}}$${E_2}/{\rm{GPa}}$${G_{12}}/{\rm{GPa}}$${G_{23}}/{\rm{GPa}}$${F_1}/{\rm{MPa}}$${F_2}/{\rm{MPa}}$$S/{\rm{MPa}}$${\nu _{12}}$
    ${F_{1{\rm{t}}}}$${F_{1{\rm{c}}}}$${F_{{\rm{2t}}}}$${F_{{\rm{2c}}}}$
    C[1] Fiber 230 40 24 14.3 890 756 50 0.26
    C-SiC Matrix 81.0 81.0 35.2 35.2 40.0 45.0 40.0 45.0 30.0 0.15
    C/C-SiC Yarn(Vf=80%) 200.2 45.9 26.0 16.8 716.4 609.3 37.2 41.3 26.3 0.23
    Notes: Constitutive models of fiber and yarn are both assumed to be transversely isotropic, and the constitutive model of matrix is assumed to be isotropic; ${E_1}$,${F_{1{\rm{t}}}}$,${F_{1{\rm{c}}}}$,${G_{12}}$ and ${\nu _{12}}$—Young’s modulus, tensile strength, compressive strength, shear modulus and Poisson’s ratio in the longitudinal direction, respectively; ${E_2}$,${F_{{\rm{2t}}}}$,${F_{{\rm{2c}}}}$,${G_{23}}$ and $S$—Young’s modulus, tensile strength, compressive strength, shear modulus and shear strength in the transverse direction, respectively.
    下载: 导出CSV
  • [1] AI S G, FANG D N, HE R J, et al. Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites[J]. Composites Part B: Engineering,2015,71:113-121. doi: 10.1016/j.compositesb.2014.11.003
    [2] 甄文强, 王波, 李潘, 等. 平纹编织C/SiC复合材料层合板偏轴拉伸性能研究[J]. 机械强度, 2014, 36(6):856-861.

    ZHEN Wenqiang, WANG Bo, LI Pan, et al. Study of off-axis tensile properties of plain-woven C/SiC composites[J]. Journal of Mechanical Strength,2014,36(6):856-861(in Chinese).
    [3] GARCÍA-CARPINTERO A, HERRÁEZ M, XU J, et al. A multi material shell model for the mechanical analysis of triaxial braided composites[J]. Applied Composite Materials,2017,24(6):1425-1445. doi: 10.1007/s10443-017-9593-9
    [4] 田俊, 周储伟. 纺织复合材料和结构多尺度耦合的数值分析[J]. 计算力学学报, 2011, 2008:1-5. doi: 10.7511/jslx201101001

    TIAN Jun, ZHOU Chuwei. Multi-scale coupled numrical analysis of textile composites and structures[J]. Chinese Journal of Computational Mechanics,2011,2008:1-5(in Chinese). doi: 10.7511/jslx201101001
    [5] 汪海滨, 曾庆丰, 张卫红, 等. 考虑孔隙和微裂纹缺陷的C/C-SiC编织复合材料等效模量计算[J]. 复合材料学报, 2008, 25(1):8-10.

    WANG Haibin, ZENG Qingfeng, ZHANG Weihong, et al. Numerical computing of effective modulus of woven C/C-SiC composites including porosities and micro-cracks[J]. Acta Materiae Compositae Sinica,2008,25(1):8-10(in Chinese).
    [6] WANG C, ROY A, SILBERSCHMIDT V V, et al. Modelling of damage evolution in braided composites: Recent developments[J]. Mechanics of Advanced Materials and Modern Processes,2017,3(1):15. doi: 10.1186/s40759-017-0030-4
    [7] 左亚卓, 李红, 耿真真, 等. C/C-SiC复合材料的制备及其烧蚀性能[J]. 上海大学学报, 2017, 23(6):2-11.

    ZUO Yazhuo, LI Hong, GENG Zhenzhen, et al. Preparation and ablation properties of C/C-SiC composites[J]. Journal of Shanghai Universite,2017,23(6):2-11(in Chinese).
    [8] FANG G D, LIANG J, WANG Y, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing, Elsevier Ltd,2009,40(4):343-350. doi: 10.1016/j.compositesa.2008.12.007
    [9] FANG G D, LIANG J. A review of numerical modeling of three-dimensional braided textile composites[J]. Journal of Composite Materials,2011,45(23):2415-2436. doi: 10.1177/0021998311401093
    [10] 卢子兴, 徐强, 王伯平, 等. 含缺陷平纹机织复合材料拉伸力学行为数值模拟[J]. 复合材料学报, 2011, 28(6):200-207.

    LU Zixing, XU Qiang, WANG Boping, et al. Numerical simulation of plain weave composites with defects under unidirectional tension[J]. Acta Materiae Compositae Sinica,2011,28(6):200-207(in Chinese).
    [11] 齐泽文, 胡殿印, 张龙, 等. 含孔隙三维四向编织复合材料力学性能的双尺度分析[J]. 推进技术, 2018, 39(8):1873-1879.

    QI Zewen, HU Dianyin, ZHANG Long, et al. Two-scale analysis for mechanical properties of 3D four-directional braided composites with pore defects[J]. Journal of Propulsion Technology,2018,39(8):1873-1879(in Chinese).
    [12] 李波, 赵美英, 万小朋. 不规则孔隙对复合材料横向拉伸力学性能的影晌[J]. 复合材料学报, 2019, 188(2):1-9.

    LI Bo, ZHAO Meiying, WAN Xiaopeng. Influeoce of irregular-void on transverse tensile mechanical properties of composites[J]. Acta Materiae Compositae Sinica,2019,188(2):1-9(in Chinese).
    [13] 徐绯, 李玉龙, 郭伟国, 等. 颗粒形状、含量和基体特性对金属基复合材料压缩力学行为的影响[J]. 复合材料学报, 2003, 20(6):36-41. doi: 10.3321/j.issn:1000-3851.2003.06.008

    XU Fei, LI Yulong, GUO Weiguo, et al. Influence of particle shape, volume fraction and matrix materials on the compressive behavior of MMCs[J]. Acta Materiae Compositae Sinica,2003,20(6):36-41(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.06.008
    [14] 邵军超, 刘越. 颗粒增强金属基复合材料力学行为有限元模拟研究现状[J]. 材料导报, 2007(9):111-115.

    SHAO Junchao, LIU Yue. A review of finite element simulations on the mechanical behavior for particles reinforced metal matrix composites[J]. Materials Reports,2007(9):111-115(in Chinese).
    [15] LLORCA J, SEGURADO J. Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites[J]. Materials Science and Engineering: A,2004,365(1-2):267-274. doi: 10.1016/j.msea.2003.09.035
    [16] 金泉, 覃继宁, 张荻, 等. 颗粒和纤维混杂增强复合材料力学性能的三维有限元模拟[J]. 复合材料学报, 2006, 23(2):14-20. doi: 10.3321/j.issn:1000-3851.2006.02.003

    JIN Quan, QIN Jining, ZHANG Di, et al. 3D FEM simulation of mechanics property of composites reinforced by both particles and fibers[J]. Acta Materiae Compositae Sinica,2006,23(2):14-20(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.003
    [17] ALFARO C M V, SUIKER A S J, VERHOOSEL C V, et al. Numerical homogenization of cracking processes in thin fibre-epoxy layers[J]. European Journal of Mechanics/A Solids,2009,29(2):119-131.
    [18] 夏彪. 三维多向编织复合材料的力学与热物理性能研究[D]. 北京: 北京航空航天大学, 2013.

    XIA Biao. Investigation on the mechanical and thermal-physical properties of the three-dimensional and multi-directional braided composites[D]. Beijing: Beihang University, 2013(in Chinese).
    [19] KUSHCH V I, SHMEGERA S V, MISHNAEVSKY L. Meso cell model of fiber reinforced composite: Interface stress statistics and debonding paths[J]. International Journal of Solids and Structures,2008,45(9):2758-2784. doi: 10.1016/j.ijsolstr.2007.12.019
    [20] CHEN S, ISAKSSON P. A note on the defect sensitivity of brittle solid foams[J]. Engineering Fracture Mechanics, Elsevier,2019,206:541-550. doi: 10.1016/j.engfracmech.2018.11.012
    [21] 李贺颖, 王艳慧. 贫困县村级居民点空间分布离散度与农村居民纯收入关联格局分析[J]. 地理研究, 2014, 33(9):1617-1628.

    LI Heying, WANG Yanhui. Discrete degree on village settlement's spatial distribution and its correlation with net income of rural residents in poverty county[J]. Geographical Research,2014,33(9):1617-1628(in Chinese).
    [22] ASTM. Standard test method for monotonic tensile behavior of continuous fiber-reinforced advanced ceramics with solid rectangular cross-section test specimens at ambient temperature: ASTM Standard C 1275-00[S]. West Conshohocken: ASTM International, 2000.
    [23] XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of compo-sites[J]. International Journal of Solids and Structures,2006,43(2):266-278. doi: 10.1016/j.ijsolstr.2005.03.055
    [24] LINDE P, PLEITNER J, BOER D H, et al. Modelling and simulation of fibre metal laminates[C]. ABAQUS Users’ Conference, 2004: 421–439.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  633
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 录用日期:  2019-11-22
  • 网络出版日期:  2019-12-16
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回