留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响

曾伟 丁一宁

曾伟, 丁一宁. 结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响[J]. 复合材料学报, 2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002
引用本文: 曾伟, 丁一宁. 结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响[J]. 复合材料学报, 2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002
ZENG Wei, DING Yining. Effect of macro fibers on flexural toughness and crack surface topography of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002
Citation: ZENG Wei, DING Yining. Effect of macro fibers on flexural toughness and crack surface topography of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2303-2313. doi: 10.13801/j.cnki.fhclxb.20191213.002

结构型纤维对混凝土弯曲韧性和裂缝表面形态的影响

doi: 10.13801/j.cnki.fhclxb.20191213.002
基金项目: 国家自然科学基金(51578109)
详细信息
    通讯作者:

    丁一宁,博士,教授,博士生导师,研究方向为高性能混凝土 Email:ynding@hotmail.com

  • 中图分类号: TU528.572

Effect of macro fibers on flexural toughness and crack surface topography of concrete

  • 摘要: 为了研究结构型聚丙烯纤维、结构型钢纤维及混杂纤维(包括结构型聚丙烯纤维和结构型钢纤维)对混凝土弯曲韧性及裂缝表面形态的影响,参照RILEM TC 162-TDF[10]标准进行混凝土开口梁的三点弯曲试验。利用激光扫描仪对每个试件裂缝表面形态进行信息采集。基于裂缝表面信息,计算了四种裂缝表面粗糙程度参数(即裂缝粗糙度(RN)、分形维数(D)、z坐标正态分布的标准差(σz)和裂缝曲折度(τ)),并比较分析了裂缝表面粗糙程度参数与弯曲韧性参数之间的相关性。研究表明:随着纤维掺量的增多,混凝土弯曲韧性和裂缝表面粗糙程度均随之增大。与结构型聚丙烯纤维和结构型钢纤维相比,混杂纤维在提高混凝土弯曲韧性和增大混凝土裂缝表面粗糙度方面均展现出正混杂效应。与分形维数Dz坐标正态分布标准差σz和裂缝曲折度τ相比,裂缝粗糙度RN与纤维增强混凝土梁弯曲韧性参数的相关性最为显著,且存在指数函数关系。基于该函数关系,可借助纤维增强混凝土梁的弯曲试验快速估测裂缝表面的粗糙程度。

     

  • 图  1  结构型钢纤维(SF)和结构型聚丙烯纤维(PP)的形状

    Figure  1.  Geometries of macro steel fiber(SF) and macro polypropylene fiber(PP)

    图  2  混凝土开口梁弯曲试验

    Figure  2.  Flexural test of concrete notched beam

    LVDT—Linear variable differential transformer

    图  3  激光扫描仪

    Figure  3.  Laser scanner

    图  4  激光扫描路径

    Figure  4.  Laser scanning trace

    图  5  混凝土裂缝表面形态示意图

    Figure  5.  Schematic view of cracked surface topography of concrete

    图  6  盒子计数法示意图

    Figure  6.  Schematic view of cubic covering method

    图  7  混凝土试件裂缝表面z坐标分布直方图

    Figure  7.  Distribution histogram of z coordinates from concrete cracked surface

    图  8  混凝土裂缝曲折度计算方法

    Figure  8.  Computational method of crack tortuosity of concrete

    图  9  普通混凝土(NC)、钢纤维增强混凝土(SF/NC)、聚丙烯纤维增强混凝土(PP/NC)和混杂纤维增强混凝土(SF-PP/NC)试件的荷载-挠度曲线

    Figure  9.  Load-deflection curves of normal concrete(NC), steel fiber reinforced concrete(SF/NC), polypropylene fiber reinforced concrete(PP/NC) and hybrid fiber reinforced concrete(SF-PP/NC) specimens

    图  10  NC、SF/RC、PP/NC和SF-PP/NC试件裂缝表面的重构图

    Figure  10.  Reconstruction views of cracked surface of NC, SF/RC, PP/NC and SF-PP/NC specimens

    图  11  NC、SF/NC、PP/NC和SF-PP/NC试件的粗糙程度参数

    Figure  11.  Roughness parameters of NC, SF/NC, PP/NC and SF-PP/NC specimens

    图  12  混凝土裂缝表面粗糙程度参数与弯曲韧性参数的统计关系

    Figure  12.  Statistical relationship between roughness parameters and flexural toughness parameters of concrete

    图  13  NC、SF/NC、PP/NC和SF-PP/NC试件的裂缝粗糙度RN对比

    Figure  13.  Comparison of crack surface roughness number RN of NC, SF/NC, PP/NC and SF-PP/NC specimens

    图  14  SF/NC、PP/NC和SF-PP/NC试件裂缝粗糙度与弯曲韧性的关系

    Figure  14.  Relationship between cracked surface roughness and parameters of flexural toughness of SF/NC, PP/NC and SF-PP/NC specimens

    表  1  混凝土基准配比

    Table  1.   Basic mix proportion of concrete kg·m–3

    CementFly ashFine aggregateCoarse aggregateWaterSuperplasticizer
    390 155 822 848 272.5 5.5
    下载: 导出CSV

    表  2  纤维性能参数

    Table  2.   Properties of fibers

    TypeShape of fiberLength/mmDiameter/mmAspect ratioTensile
    strength/MPa
    Elastic
    modulus/GPa
    Number/
    (104 pieces·kg−1)
    Macro PP Straight 45 0.75 60 490 3.9 5.76
    Macro SF Hooked-end 35 0.55 65 1 150 200.0 1.45
    下载: 导出CSV

    表  3  28天龄期混凝土试件抗压强度

    Table  3.   Compressive strength (28 d) of concrete specimens

    CompositeSFPPCompressive strength/MPa
    NC 37.3
    SF20/NC 20 kg/m3 (0.25vol%) 41.7
    SF40/NC 40 kg/m3 (0.5vol%) 35.4
    SF60/NC 60 kg/m3 (0.75vol%) 34.1
    PP2.3/NC 2.3 kg/m3 (0.25vol%) 36.5
    PP4.6/NC 4.6 kg/m3 (0.5vol%) 35.4
    PP6.9/NC 6.9 kg/m3 (0.75vol%) 37.5
    SF20-PP2.3/NC 20 kg/m3 (0.25vol%) 2.3 kg/m3 (0.25vol%) 37.2
    SF40-PP2.3/NC 40 kg/m3 (0.5vol%) 2.3 kg/m3 (0.25vol%) 38.5
    下载: 导出CSV

    表  4  NC、SF/NC、PP/NC和SF-PP/NC试件的比例极限荷载、极限荷载、能量吸收能力、等效抗弯强度和裂缝表面纤维根数

    Table  4.   Load at limit of proportionality, ultimate load, energy absorption capacity, equivalent flexural tensile strength and parameters of flexural toughness of NC, SF/NC, PP/NC and SF-PP/NC specimens

    Fiber content/vol%SpecimenFL/kNFu/kNDfBZ,2/(N·m)feq,2/MPaDfBZ,3/(N·m)feq,3/MPaNf
    0 NC 10.0 10.0 0 0 0 0 0
    0.25 SF20/NC 9.1 9.1 2.0 2.23 11.3 2.52 60.0
    PP2.3/NC 9.7 9.7 1.1 1.20 7.4 1.65 50.7
    0.50 SF40/NC 11.4 11.9 4.3 4.82 25.3 5.63 125.0
    PP4.6/NC 9.8 9.8 1.4 1.53 9.7 2.16 108.0
    SF20-PP2.3/NC 11.2 13.0 5.1 5.67 29.5 6.56 134.7
    0.75 SF60/NC 12.4 18.4 9.1 10.12 45.1 10.03 199.3
    PP6.9/NC 10.6 10.6 2.3 2.51 13.9 3.10 169.0
    SF40-PP2.3/NC 12.3 15.7 6.2 6.89 36.2 8.04 194.3
    Notes: FL—Maximum load in the interval of 0.05 mm; Fu—Ultimate load; DfBZ,2, DfBZ,3 —Energy absorption of the influence of fiber at the deflections of (δL+0.65 mm) and (δL+2.65 mm), respectively; feq,2, feq,3—Equivalent flexural tensile strengths by the deflections of (δL+0.65 mm) and (δL+2.65 mm), respectively; Nf—Number of fibers on the cracked surface.
    下载: 导出CSV

    表  5  NC、SF/NC、PP/NC和SF-PP/NC试件的裂缝表面粗糙程度参数

    Table  5.   Roughness parameters of NC, SF/NC, PP/NC and SF-PP/NC specimens

    ParameterNCSF20/NCSF40/NCSF60/NCPP2.3/NCPP4.6/NCPP6.9/NCSF20-PP2.3/NCSF40-PP2.3/NC
    RN 1.20
    (Cv=2.5%)
    1.47
    (Cv=4.8%)
    1.89
    (Cv=2.0%)
    1.98
    (Cv=3.3%)
    1.23
    (Cv=5.9%)
    1.58
    (Cv=3.2%)
    1.74
    (Cv=2.3%)
    1.96
    (Cv=0.9%)
    2.04
    (Cv=1.6%)
    D 2.068
    (Cv=3.5%)
    2.082
    (Cv=1.9%)
    2.124
    (Cv=5.0%)
    2.149
    (Cv=4.0%)
    2.076
    (Cv=2.0%)
    2.117
    (Cv=1.7%)
    2.125
    (Cv=2.3%)
    2.143
    (Cv=2.9%)
    2.157
    (Cv=5.1%)
    σz/mm 2.173
    (Cv=3.4%)
    2.411
    (Cv=3.0%)
    2.805
    (Cv=1.9%)
    2.994
    (Cv=2.8%)
    2.250
    (Cv=2.2%)
    2.542
    (Cv=1.0%)
    2.587
    (Cv=5.5%)
    2.896
    (Cv=3.5%)
    3.384
    (Cv=2.5%)
    τ 0.824
    (Cv=1.1%)
    0.758
    (Cv=1.8%)
    0.742
    (Cv=2.2%)
    0.740
    (Cv=3.3%)
    0.792
    (Cv=6.7%)
    0.777
    (Cv=6.1%)
    0.754
    (Cv=2.6%)
    0.722
    (Cv=1.8%)
    0.715
    (Cv=2.1%)
    Note: Cv—Coefficient of variation; RN—Roughness number; D—Fractal dimension; σz—Standard deviation of height distribution; τ—Crack tortuosity.
    下载: 导出CSV
  • [1] DING Y, LI D, ZHANG Y. Quantitative analysis of macro steel fiber influence on crack geometry and water permeability of concrete[J]. Composite Structures,2018,187:325-335. doi: 10.1016/j.compstruct.2017.12.074
    [2] RASTIELLO G, BOULAY C, PONT S D, et al. Real-time water permeability evolution of a localized crack in concrete under loading[J]. Cement and Concrete Research,2014,56:20-28. doi: 10.1016/j.cemconres.2013.09.010
    [3] ISSA M A, ISSA M A, ISLAM M S, et al. Fractal dimension: A measure of fracture roughness and toughness of concrete[J]. Engineering Fracture Mechanics,2003,70(1):125-137. doi: 10.1016/S0013-7944(02)00019-X
    [4] KURTIS K E, EL-ASHKAR N H, COLLINS C L, et al. Examining cement-based materials by laser scanning confocal microscopy[J]. Cement <italic>&</italic> Concrete Composites,2003,25(7):695-701.
    [5] FICKER T, MARTIŠEK D, JENNINGS H M. Roughness of fracture surfaces and compressive strength of hydrated cement pastes[J]. Cement and Concrete Research,2010,40(6):947-955. doi: 10.1016/j.cemconres.2010.02.002
    [6] ERDEM S, BLANKSON M A. Fractal-fracture analysis and characterization of impact-fractured surfaces in different types of concrete using digital image analysis and 3D nanomap laser profilometery[J]. Construction and Building Materials,2013,40:70-76. doi: 10.1016/j.conbuildmat.2012.11.013
    [7] CAI W, CEN G, WANG H. Fracture surface fractal characteristics of alkali-slag concrete under freeze-thaw cycles[J]. Advances in Materials Science and Engineering,2017,2017:1689893.
    [8] 丁一宁, 郝晓卫, 门旭. 纤维对混凝土裂缝宽度、曲折度及渗透性的影响[J]. 复合材料学报, 2019, 36(2):491-497.

    DING Yining, HAO Xiaowei, MEN Xu. Effect of fiber on the crack width, tortuosity and permeability of concrete[J]. Acta Materiae Compositae Sinica,2019,36(2):491-497(in Chinese).
    [9] 邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6):1274-1280.

    DENG Zongcai. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2016,33(6):1274-1280(in Chinese).
    [10] RILEM Technical Committees. Test and design methods for steel fiber reinforced concrete: Bending test: Rilem TC 162-TDF[J]. Materials and Structures,2002,35(9):579-582.
    [11] ASTM International. Standard test method for flexural performance of fiber reinforced concrete (using beam with three-point loading): ASTM C1609—19a[S]. Weat Conshohocken: ASTM International, 2012.
    [12] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13∶2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13∶2009[S]. Beijing: China Planning Press, 2010(in Chinese).
    [13] Japan Concrete Institute. Method of test for fracture energy of concrete by use of notched beam: JCI-S-001-2003[S]. Tokyo: Japan Concrete Institute, 2003.
    [14] XIN Y B, HSIA K J, LANGE D A. Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy[J]. Journal of the American Ceramic Society,2010,78(12):3201-3208.
    [15] APEDO K L, MONTGOMERY P, SERRES N, et al. Geometrical roughness analysis of cement paste surfaces using coherence scanning interferometry and confocal microscopy[J]. Materials Characterization,2016,118:212-224. doi: 10.1016/j.matchar.2016.05.023
    [16] LANGE D A, JENNINGS H M, SHAH S P. Relationship between fracture surface roughness and fracture behavior of cement paste and mortar[J]. Journal of the American Ceramic Society,1993,76(3):589-597. doi: 10.1111/j.1151-2916.1993.tb03646.x
    [17] ZHOU H W, XIE H. Direct estimation of the fractal dimensions of a fracture surface of Rock[J]. Surface Review <italic>&</italic> Letters,2008,10(5):751-762.
    [18] AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research,2012,42(2):313-320. doi: 10.1016/j.cemconres.2011.10.002
    [19] FICKER T, MARTIŠEK D. Roughness and fractality of fracture surfaces as indicators of mechanical quantities of porous solids[J]. Central European Journal of Physics,2011,9(6):1440-1445.
    [20] CARPINTERI A. A fractal analysis of size effect on fatigue crack growth[J]. International Journal of Fatigue,2004,26(2):125-133. doi: 10.1016/S0142-1123(03)00142-7
    [21] LIMANDRI S, GALVÁN JOSA V, VALENTINUZZI M C, et al. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel[J]. Micron,2016,84:54-60. doi: 10.1016/j.micron.2016.02.001
    [22] BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, Inc., 1972.
    [23] DING Y, AZEVEDO C, AGUIAR J B, et al. Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature[J]. Construction and Building Materials,2011,26(1):21-31.
    [24] ARMANDEI M, FILHO E D S S. Correlation between fracture roughness and material strength parameters in SFRCs using 2D image analysis[J]. Construction and Building Materials,2017,140:82-90. doi: 10.1016/j.conbuildmat.2017.02.103
    [25] YAN A, WU K R, ZHANG D, et al. Effect of fracture path on the fracture energy of high-strength concrete[J]. Cement and Concrete Research,2001,31(11):1601-1606. doi: 10.1016/S0008-8846(01)00610-X
    [26] DING Y. Investigations into the relationship between deflection and crack mouth opening displacement of SFRC beam[J]. Construction and Building Materials,2011,25(5):2432-2440. doi: 10.1016/j.conbuildmat.2010.11.055
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  984
  • HTML全文浏览量:  265
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2019-12-04
  • 网络出版日期:  2019-12-16
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回