留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化

谢远江 罗明洪 夏克坚

谢远江, 罗明洪, 夏克坚. 功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化[J]. 复合材料学报, 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
引用本文: 谢远江, 罗明洪, 夏克坚. 功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化[J]. 复合材料学报, 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
XIE Yuanjiang, LUO Minghong, XIA Kejian. Preparation of functionalized graphene multilayer films supported Au catalyst and its electro-oxidation for hydrazine[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001
Citation: XIE Yuanjiang, LUO Minghong, XIA Kejian. Preparation of functionalized graphene multilayer films supported Au catalyst and its electro-oxidation for hydrazine[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1695-1702. doi: 10.13801/j.cnki.fhclxb.20191209.001

功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化

doi: 10.13801/j.cnki.fhclxb.20191209.001
基金项目: 国家自然科学基金(21763019);江西省教育厅重点科技项目(GJJ171111;GJJ181066)
详细信息
    通讯作者:

    罗明洪,硕士,副教授,研究方向为燃料电池阳极催化剂 E-mail:minghongluo@163.com

  • 中图分类号: TM911.48

Preparation of functionalized graphene multilayer films supported Au catalyst and its electro-oxidation for hydrazine

  • 摘要: 以聚二甲基二烯丙基氯化铵功能化石墨烯(PDDA-GNs)和磷钼酸功能化石墨烯(PMo12-GNs)为原料,利用层层自组装法制备了功能化石墨烯多层膜({PDDA-GNs/PMo12-GNs}),以此多层膜为载体,通过恒电位电沉积法制备功能化石墨烯多层膜载金催化剂(Au/{PDDA-GNs/PMo12-GNs}n)。采用XRD、XPS和SEM等表征Au/{PDDA-GNs/PMo12-GNs}n催化剂的组成、结构和形貌。结果表明:实验成功制备了Au/{PDDA-GNs/PMo12-GNs}n催化剂,且多层膜载体改善了Au粒子的分散性。利用循环伏安(CV)、计时电流(It)和交流阻抗(EIS)等评价催化剂对肼氧化的电催化性能。结果表明,Au/{PDDA-GNs/PMo12-GNs}n催化剂使肼氧化的电催化活性和稳定性得到很大提高。与Au/玻碳电极(GCE)相比,Au/{PDDA-GNs/PMo12-GNs}n催化肼氧化反应的峰电流密度从0.46 mA/cm2提高到0.87 mA/cm2,600 s时的稳态电流密度是Au/GCE的2.5倍。

     

  • 图  1  功能化石墨烯多层膜载金(Au/{PDDA-GNs/PMo12-GNs}n)催化剂的制备示意图

    Figure  1.  Schematic illustration of preparation of functionalized graphene multilayer films supported Au(Au/{PDDA-GNs/PMo12-GNs}n) catalyst (PDDA-GNs—Polydimethyldiallyl ammonium chloride functionalized graphene;PMo12-GNs—Phosphomolybdate functionalized graphene)

    图  2  多层膜{PDDA-GNs/PMo12-GNs}n/玻碳电极(GCE) (n=1~6)的循环伏安(CV)曲线

    Figure  2.  Cyclic voltammetry (CV) curves of multilayer films {PDDA-GNs/PMo12-GNs}n/glassy carbon electrode (GCE) (n=1–6)

    图  3  {PDDA-GNs/PMo12-GNs}n/氧化铟锡玻璃(ITO)和{Au/PDDA-GNs/PMo12-GNs}n/ITO的XRD图谱

    Figure  3.  XRD patterns of the {PDDA-GNs/PMo12-GNs}n/indium tin oxide(ITO) and {Au/PDDA-GNs/PMo12-GNs}n/ITO

    图  4  ITO(a)、Au/ITO(b)、{PDDA-GNs/PMo12-GNs}n/ITO(c)和{Au/PDDA-GNs/PMo12-GNs}n/ITO(d)的SEM图像

    Figure  4.  SEM images of ITO(a), Au/ITO(b), {PDDA-GNs/PMo12-GNs}n/ITO(c) and {Au/PDDA-GNs/PMo12-GNs}n/ITO(d)

    图  5  {Au/PDDA-GNs/PMo12-GNs}n/ITO复合材料的XPS图谱

    Figure  5.  XPS spectra of {Au/PDDA-GNs/PMo12-GNs}n/ITO composites

    图  6  {Au/PDDA-GNs/PMo12-GNs}n/GCE和Au/GCE在0.5 mol/L H2SO4溶液中的CV曲线

    Figure  6.  CV curves of {Au/PDDA-GNs/PMo12-GNs}n/GCE and Au/GCE in 0.5 mol/L H2SO4 solution

    图  7  不同催化剂在5 mmol/L N2H4和1 mol/L KOH溶液中的CV曲线

    Figure  7.  CV curves of different catalysts in 5 mmol/L N2H4 and 1 mol/L KOH solution

    图  8  {Au/PDDA-GNs/PMo12-GNs}n/GCE(a)和Au/GCE(b)在5 mmol/L [Fe(CN)6]3−/4−和0.1 mol/L KCl溶液中的交流阻抗图谱

    Figure  8.  Electrochemical impedance spectra of{Au/PDDA-GNs/PMo12-GNs}n/GCE(a) and Au/GCE(b) in 5 mmol/L [Fe(CN)6]3−/4− and 0.1 mol/L KCl solution(R—Solution resistance; Rct—Charge transfer resistance; Cd—Electrical doule layer capacitor)

    图  9  在–0.3 V时{Au/PDDA-GNs/PMo12-GNs}n/GCE和Au/GCE在5 mmol/L N2H4和1 mol/L KOH溶液中的计时电流曲线

    Figure  9.  Chronoamperometric curves of {Au/PDDA-GNs/PMo12-GNs}n/GCE and Au/GCE in 5 mmol/L N2H4 and 1 mol/L KOH solution at −0.3 V

  • [1] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486(7401):43-51. doi: 10.1038/nature11115
    [2] 杜昌朝, 詹霞丹, 李常荣, 等. 羟基锡酸盐载铂复合催化剂Pt/(Co, Zn)Sn(OH)6的合成及其甲醇电催化氧化性能[J]. 复合材料学报, 2018, 35(1):173-179.

    DU C Z, ZHAN X D, LI C R, et al. Synthesis of Pt/(Co, Zn)Sn(OH)6 complex catalysts and their catalytic activity towards methanol electrochemical oxidation[J]. Acta Materiae Compositae Sinica,2018,35(1):173-179(in Chinese).
    [3] JIANG X, FU G T, WU X, et al. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation[J]. Nano Research,2018,11(1):499-510. doi: 10.1007/s12274-017-1658-4
    [4] WANG J J, CHEN F Y, JIN Y C, et al. One-pot synthesis of dealloyed AuNi nanodendrite as a bifunctional electrocatalyst for oxygen reduction and borohydride oxidation reaction[J]. Advanced Functional Materials,2017,27(23):1700260. doi: 10.1002/adfm.201700260
    [5] MA Y X, HIGHSMISH A, HILL C M. Dark-field scattering spectroelectrochemistry analysis of hydrazine oxidation at Au nanoparticle-modified transparent electrodes[J]. The Journal of Physical Chemistry C,2018,122(32):18603-18614. doi: 10.1021/acs.jpcc.8b05112
    [6] OJHA K, FARBER E M, BURSHTEIN T Y, et al. A multi-doped electrocatalyst for efficient hydrazine oxidation[J]. Angewandte Chemie International Edition,2018,57(52):17168-17172. doi: 10.1002/anie.201810960
    [7] DAS A K, KIM N H, PRADHAN D, et al. Electrochemical synthesis of palladium (Pd) nanorods: An efficient electrocatalyst for methanol and hydrazine electrooxidation[J]. Composites Part B: Engineering,2018,144:11-18. doi: 10.1016/j.compositesb.2018.02.017
    [8] ROSTAMI H, KHOSRAVI F, MOHSENI M, et al. Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation[J]. International Journal of Biological Macromolecules,2018,107:343-348. doi: 10.1016/j.ijbiomac.2017.08.179
    [9] YANG G W, GAO G Y, WANG C, et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon,2008,46(5):747-752. doi: 10.1016/j.carbon.2008.01.026
    [10] LIU M, ZHANG R, ZHANG L X, et al. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction[J]. Inorganic Chemistry Frontiers,2017,4(3):420-423. doi: 10.1039/C6QI00384B
    [11] WANG Y H, LIU X Y, TAN T, et al. A phosphatized pseudo-core-shell Fe@Cu-P/C electrocatalyst for efficient hydrazine oxidation reaction[J]. Journal of Alloys and Compounds,2019,787:104-111. doi: 10.1016/j.jallcom.2019.02.006
    [12] SUN Q Q, ZHOU M, SHEN Y Q, et al. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation[J]. Journal of Catalysis,2019,373:180-189. doi: 10.1016/j.jcat.2019.03.039
    [13] WU L S, WEN X P, WEN H, et al. Palladium decorated porous nickel having enhanced electrocatalytic performance for hydrazine oxidation[J]. Journal of Power Sources,2019,412:71-77. doi: 10.1016/j.jpowsour.2018.11.023
    [14] DE OLIVEIRA D C, SILVA W O, CHATENET M, et al. NiOx-Pt/C nanocomposites: Highly active electrocatalysts for the electrochemical oxidation of hydrazine[J]. Applied Catalysis B: Environmental,2017,201:22-28. doi: 10.1016/j.apcatb.2016.08.007
    [15] CHEN L X, JIANG L Y, WANG A J, et al. Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction[J]. Electrochimica Acta,2016,190:872-878. doi: 10.1016/j.electacta.2015.12.151
    [16] ROY N, BHUNIA K, TERASHIMA C, et al. Citrate-capped hybrid Au-TiO2 nanomaterial for facile and enhanced electrochemical hydrazine oxidation[J]. ACS Omega,2017,2(3):1215-1221. doi: 10.1021/acsomega.6b00566
    [17] HAN Y J, HAN L, ZHANG L L, et al. Ultrasonic synthesis of highly dispersed Au nanoparticles supported on Ti-based metal-organic frameworks for electrocatalytic oxidation of hydrazine[J]. Journal of Materials Chemistry A,2015,3(28):14669-14674. doi: 10.1039/C5TA03090K
    [18] LIU Y, CHEN S S, WANG A J, et al. An ultra-sensitive electrochemical sensor for hydrazine based on AuPd nanorod alloy nanochains[J]. Electrochimica Acta,2016,195:68-76. doi: 10.1016/j.electacta.2016.01.229
    [19] BHARATH G, NALDONI A, RAMSAIT K H, et al. Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors[J]. Journal of Materials Chemistry A,2016,4(17):6385-6394. doi: 10.1039/C6TA01528J
    [20] ZHANG Y, HAN T Y, WANG Z Y, et al. In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine[J]. Sensors and Actuators B: Chemical,2017,243:1231-1239. doi: 10.1016/j.snb.2016.12.085
    [21] LIU C B, ZHANG H, TANG Y H, et al. Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation[J]. Journal of Materials Chemistry A,2014,2(13):4580-4587. doi: 10.1039/C3TA14137C
    [22] YANG J, ZHAO F Q, ZENG B Z. Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal-organic frameworks for electrochemical sensing of hydrazine[J]. RSC Advances,2016,6(28):23403-23410. doi: 10.1039/C6RA00096G
    [23] WANG J, DONG Z P, HUANG J W, et al. Filling carbon nanotubes with Ni–Fe alloys via methylbenzene-oriented constant current electrodeposition for hydrazine electrocatalysis[J]. Applied Surface Science,2013,270:128-132. doi: 10.1016/j.apsusc.2012.12.137
    [24] LIU X, LI Y X, CHEN N, et al. Ni3S2@Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation[J]. Electrochimica Acta,2016,213:730-739. doi: 10.1016/j.electacta.2016.08.009
    [25] LIU R, JIANG X, GUO F, et al. Carbon fiber cloth supported micro-and nano-structured Co as the electrode for hydrazine oxidation in alkaline media[J]. Electrochimica Acta,2013,94:214-218. doi: 10.1016/j.electacta.2013.02.011
    [26] YUE X Y, YANG W X, XU M, et al. High performance of electrocatalytic oxidation and determination of hydrazine based on Pt nanoparticles/TiO2 nanosheets[J]. Talanta,2015,144:1296-1300. doi: 10.1016/j.talanta.2015.08.002
    [27] ZHONG X, YANG H D, GUO S J, et al. In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation[J]. Journal of Materials Chemistry,2012,22(28):13925-13927. doi: 10.1039/c2jm32427j
    [28] SHAHRIARY L, ATHAWALE A A. Graphene oxide synthesized by using modified hummers approach[J]. International Journal of Renewable Energy and Environmental Engineering,2014,2(1):58-63.
    [29] SHI J J, YANG G H, ZHU J J. Sonoelectrochemical fabrication of PDDA-RGO-PdPt nanocomposites as electrocatalyst for DAFCs[J]. Journal of Materials Chemistry,2011,21 (20):7343-7349. doi: 10.1039/c1jm10333d
    [30] 魏祥艳. 多酸功能化石墨烯复合材料的制备及其电催化性能研究[D]. 长春: 东北师范大学, 2016.

    WEI Xiangyan. Study on the fabrication polyoxometalate functionalized graphene nanocomposites and electrocatalytic properties[D]. Changchun: Northeast Normal University, 2016(in Chinese).
    [31] LI Z S, LIN S, CHEN Z L, et al. In situ electro-deposition of Pt micro-nano clusters on the surface of {[PMo12O40]3/PAMAM}n multilayer composite films and their electrocatalytic activities regarding methanol oxidation[J]. Journal of Colloid and Interface Science,2012,368(1):413-419. doi: 10.1016/j.jcis.2011.10.080
    [32] LI Z S, HUANG X M, ZHANG X F, et al. The synergistic effect of graphene and polyoxometalates enhanced electrocatalytic activities of Pt-{PEI-GNs/[PMo12O40]3−}n composite films regarding methanol oxidation[J]. Journal of Materials Chemistry,2012,22(44):23602-23607. doi: 10.1039/c2jm35239g
  • 加载中
图(9)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  350
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 录用日期:  2019-11-20
  • 网络出版日期:  2019-12-11
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回