留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响

叶鑫 安鲁陵 岳烜德 高国强

叶鑫, 安鲁陵, 岳烜德, 等. 填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响[J]. 复合材料学报, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002
引用本文: 叶鑫, 安鲁陵, 岳烜德, 等. 填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响[J]. 复合材料学报, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002
YE Xin, AN Luling, YUE Xuande, et al. Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002
Citation: YE Xin, AN Luling, YUE Xuande, et al. Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2183-2199. doi: 10.13801/j.cnki.fhclxb.20191207.002

填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20191207.002
基金项目: 国家自然科学基金(51975280);国家商用飞机制造工程技术研究中心项目(COMAC-SFGS-2018-3008)
详细信息
    通讯作者:

    安鲁陵,博士,教授,博士生导师,研究方向为飞机装配技术 E-mail:anllme@nuaa.edu.cn

  • 中图分类号: TB332

Effect of gap-filling compensation on mechanical properties of carbon fiber/epoxy composite-aluminum assembly structure

  • 摘要: 碳纤维/环氧树脂复合材料和铝合金作为主要的航空材料,在飞机结构中存在着大量装配关系,但受成型工艺方法的限制,两种材料在制造和装配偏差的情况下,构件配合面间会产生装配间隙,当间隙超过一定大小时,需要采取填隙补偿措施。本研究基于实际结构抽象出碳纤维/环氧树脂复合材料-铝合金装配模型,使用装配试验台模拟施加螺栓预紧力,通过应变片实验比较强迫装配及垫片补偿情况下试件局部表面的应变分布,结合三维数字图像相关(3D-DIC)实验测得的试件表面应变场分析变形规律;通过有限元进行层间应力分析,提取内聚力单元各应力分量和损伤情况,研究填隙补偿对碳纤维/环氧树脂复合材料层间应力和局部损伤的影响。结合实验和仿真分析结果表明:强迫装配时,碳纤维/环氧树脂复合材料-铝合金试件主要受弯曲变形和螺栓头挤压的影响,且随着装配间隙的增大,各应变值均增大;垫片补偿在改善弯曲变形引起的应变状态的同时,也使中间贴合部位的螺栓头挤压区应变增大,但总体而言,垫片的引入使碳纤维/环氧树脂复合材料-铝合金试件表面应变分布趋于均匀,降低了碳纤维/环氧树脂复合材料损伤情况,且液体垫片补偿效果略好于可剥垫片。

     

  • 图  1  复合材料翼盒

    Figure  1.  Composite wing box

    图  2  复合材料-铝合金装配间隙简化模型示意图

    Figure  2.  Schematic diagram of simplified model of composite-aluminum assembly gap

    图  3  高锁螺栓预紧力加载实验装置

    Figure  3.  Experimental device for preloading high-lock bolts

    图  4  施加垫片试样

    Figure  4.  Specimens with shim

    图  5  复合材料和铝合金试件尺寸及应变片布置

    Figure  5.  Size of composite and aluminum specimens and arrangement of strain gauges

    图  6  三维数字图像相关(3D-DIC)操作系统

    Figure  6.  Operating system of 3D digital image correlation(3D-DIC)

    A—CCD cameras; B—Light source; C—Specimen

    图  7  EA9394液体垫片的应力-应变曲线[18]

    Figure  7.  Stress-strain curve of EA9394 liquid shim[18]

    图  8  碳纤维/环氧树脂复合材料-铝合金装配有限元模型

    Figure  8.  Finite element model of carbon fiber/epoxy composite-aluminum assembly

    图  9  碳纤维/环氧树脂复合材料-铝合金装配有限元模型边界条件

    Figure  9.  Finite element model with boundary conditions of carbon fiber/epoxy resin composite-aluminum assembly

    图  10  内聚力单元示意图

    Figure  10.  Diagram of cohesion element

    图  11  碳纤维/环氧树脂复合材料-铝合金无装配间隙时各测点变形情况

    Figure  11.  Deformation of each measuring point of carbon fiber/epoxy composite-aluminum without assembly gap

    图  12  3D-DIC应变分析区

    Figure  12.  Strain analysis area of 3D-DIC

    图  13  碳纤维/环氧树脂复合材料-铝合金无装配间隙下全场应变云图

    Figure  13.  Full-field strain nephogram of carbon fiber/epoxy composite-aluminum without assembly gap

    图  14  碳纤维/环氧树脂复合材料-铝合金强迫装配时各测点应变

    Figure  14.  Strain of each measuring point of carbon fiber/epoxy composite-aluminum with forced assembly

    Al—Aluminum; Composite—Carbon fiber/epoxy composite; no—Forced assembly; 1, 2, 3, 4—Measuring point

    图  15  碳纤维/环氧树脂复合材料-铝合金强迫装配对各测点变形的影响

    Figure  15.  Effect of forced assembly on deformation of each measuring point of carbon fiber/epoxy composite-aluminum

    图  16  碳纤维/环氧树脂复合材料-铝合金强迫装配下测点1和3应变片与3D-DIC测量值对比

    Figure  16.  Comparison of measured values of strain gauges and 3D-DIC at points 1 and 3 of carbon fiber/epoxy composite-aluminum under forced assembly

    图  17  碳纤维/环氧树脂复合材料-铝合金强迫装配时试件表面全场应变云图

    Figure  17.  Full-field strain nephogram of carbon fiber/epoxy composite-aluminum under forced assembly

    图  18  碳纤维/环氧树脂复合材料-铝合金填隙补偿下各测点应变

    Figure  18.  Strain of each measuring point of carbon fiber/epoxy composite-aluminum under gap-filling compensation

    lq—Liquid shim; pe—Peelable shim

    图  19  碳纤维/环氧树脂复合材料-铝合金在2.0 mm装配间隙下exx应变云图

    Figure  19.  exx strain nephogram of carbon fiber/epoxy composite-aluminum at 2.0 mm gap

    图  20  碳纤维/环氧树脂复合材料-铝合金在2.0 mm装配间隙下eyy应变云图

    Figure  20.  eyy strain nephogram of carbon fiber/epoxy composite-aluminum at 2.0 mm gap

    图  21  碳纤维/环氧树脂复合材料的3D-DIC全场应变云图和有限元仿真应变云图

    Figure  21.  Full-field strain nephogram of 3D-DIC and finite element model(FEM) of carbon fiber/epoxy composite

    图  22  碳纤维/环氧树脂复合材料填隙补偿下各应力峰值变化曲线

    Figure  22.  Peak stress curves of carbon fiber/epoxy composite under gap-filling compensation

    图  23  碳纤维/环氧树脂复合材料无装配间隙下内聚力单元应力分布及损伤情况

    Figure  23.  Stress distribution and damage of cohesive element of carbon fiber/epoxy composite without assembly gap

    图  24  碳纤维/环氧树脂复合材料填隙补偿下内聚力单元应力分布及损伤情况

    Figure  24.  Stress distribution and damage of cohesive element of carbon fiber/epoxy composite under gap-filling compensation

    表  1  碳纤维/环氧树脂复合材料和可剥垫片的性能参数[13, 29]

    Table  1.   Performance parameters of carbon fiber/epoxy composite and peelable shim[13, 29]

    MaterialE11/GPaE22/GPaE33/GPaG12/GPaG13/GPaG23/GPaν12ν13ν23
    Carbon fiber/epoxy composite 156.0 8.35 8.35 4.20 4.20 2.52 0.33 0.33 0.55
    Peelable shim 20.1 20.10 8.10 3.30 3.30 3.30 0.18 0.18 0.18
    Notes: E11, E22, E33—Young’s modulus; G12, G13, G23—Shear modulus; ν12, ν13, ν23—Poisson’s ratio.
    下载: 导出CSV

    表  2  内聚力单元属性

    Table  2.   Properties of cohesive element

    Kn/(105 N·mm−3)Ks=Kt/(105 N·mm−3)Gn/(N·mm−1)Gs =Gt/(N·mm−1)tn/MPats=tt/MPa
    1 1 0.352 1.45 60 80
    Notes: Kn—Normal modulus; Ks, Kt—Tangential modulus; Gn,Gs,Gt—Fracture energy of mode Ⅰ, Ⅱ, Ⅲ, respectively; tn—Normal strength; ts, tt—Tangential strength.
    下载: 导出CSV

    表  3  碳纤维/环氧树脂复合材料-铝合金无装配间隙时各测点实验应变片测量值

    Table  3.   Measurement of experimental strain gauges at each measuring point of carbon fiber/epoxy composite-aluminum without assembly gap

    Measuring point1234
    Carbon fiber/
    epoxy composite
    −436.8 601.8 393.7 −337.4
    Aluminum −181.5 142.5 245.1 −248.9
    下载: 导出CSV

    表  4  碳纤维/环氧树脂复合材料-铝合金无间隙时测点1和3应变片与3D-DIC测量值对比

    Table  4.   Strain comparison of measured values of strain gauges and 3D-DIC at points 1 and 3 of carbon fiber/epoxy composite-aluminum under no-gap conditions

    Measuring methodStrain gauge3D-DIC
    Measuring point 1 3 exx eyy
    Carbon fiber/
    epoxy composite
    −436.8 393.7 −444.5 399.3
    Aluminum −181.5 245.1 −180.9 229.4
    下载: 导出CSV

    表  5  碳纤维/环氧树脂复合材料-铝合金在0.2 mm和2.0 mm装配间隙下各测点应变片测量值

    Table  5.   Measurements of strain gauges at each points of carbon fiber/epoxy composite-aluminum with gaps of 0.2 mm and 2.0 mm

    Measuring pointGap/mmStrain of aluminum/10–6Strain of composite/10–6
    Forced assemblyLiquid shimPeelable shimForced assemblyLiquid shimPeelable shim
    1 0.2 −500.4 −200.9 −365.5 −733.1 −681.3 −729.8
    2.0 −5 059.6 −1 469.5 −1 300.9 −7 140.8 −1 974.1 −2 389.5
    2 0.2 −200.9 126.4 229.4 281.8 613.9 723.8
    2.0 −2 370.4 444.5 337.4 −1 842.9 903.5 1 914.2
    3 0.2 304.1 293.4 377.4 419.5 569.3 748.1
    2.0 975.9 811.9 525.3 1 744.7 1 363.9 1 999.8
    4 0.2 −236.9 −273.8 −326.4 −598.6 −451.5 −612.4
    2.0 −845.9 −495.1 −1 233.7 −2 535.9 −1 276.1 −3 473.1
    下载: 导出CSV
  • [1] 李东升, 翟雨农, 李小强. 飞机复合材料结构少无应力装配方法研究与应用进展[J]. 航空制造技术, 2017(9):30-34.

    LI D S, ZHAI Y N, LI X Q. Research and application advances of stress-less assembly methods forcomposite airframe[J]. Aeronautical Manufacturing Technology,2017(9):30-34(in Chinese).
    [2] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [3] COLEMAN R M. The effects of design, manufacturing processes and operations management on the assembly of aircraft composite structure[D]. Massachusetts: Massachusetts Institute of Technology, 1991.
    [4] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [5] 赵稼祥. 碳纤维复合材料在民用航空上的应用[J]. 高科技纤维与应用, 2003, 28(3):1-4, 35.

    ZHAO J X. Application of carbon composite materials for civil aviation[J]. Hi-Tech Fiber <italic>&</italic> Application,2003,28(3):1-4, 35(in Chinese).
    [6] MARSH G. Airbus A350 XWB update[J]. Reiforced Plastics,2010,54(6):20-24. doi: 10.1016/S0034-3617(10)70212-5
    [7] Department of Defense. Composite materials handbook Volume 1: Polymer matrix composites guidelines for characterization of structural materials[M]. Washington: Department of Defense, 2002.
    [8] STEINBERG M A. Net shape technology in aerospace structures volume 4: Future composite manufacturing technology[M] Washington: National Research Council, 1986.
    [9] CAMPBELL F C. Manufacturing processes for advanced composites[M]. Amsterdam: Elsevier, 2004.
    [10] 徐福泉, 高大伟. 复合材料结构装配过程中的制孔和连接[J]. 航空制造技术, 2010(17):72-74. doi: 10.3969/j.issn.1671-833X.2010.17.015

    XU F Q, GAO D W. Drilling and linking during composites structure assembly process[J]. Aeronautical Manufacturing Technology,2010(17):72-74(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.17.015
    [11] 张桂书. 飞机复合材料构件装配间隙补偿研究[D]. 南京: 南京航空航天大学, 2015.

    ZHANG G S. Research on assembly gap compensation for aircraft composite components[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [12] 云一珅. 填隙补偿参数对复材螺栓连接结构的力学性能的影响研究[D]. 南京: 南京航空航天大学, 2017.

    YUN Y S. Research on the effect of gap-filling parameters on mechanical behavior of the bolt connected composite structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
    [13] 岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料装配结构应力和应变的影响[J]. 复合材料学报, 2018, 35(10):2665-2677.

    YUE X D, AN L L, YUN Y S, et al. Influences of the liquid shim on the mechanical properties of single-lap composite bolted joint[J]. Acta Materiae Compositae Sinica,2018,35(10):2665-2677(in Chinese).
    [14] ATTAHU C Y, AN L L. Influence of assembly gap and shims on the strain and stress of bolted composite-aluminum structures[J]. ARPN Journal of Engineering and Applied Sciences,2017,12(5):1593-1617.
    [15] DHÔTE J X, COMER A J, STANLEY W F, et al. Investigation into compressive properties of liquid shim for aerospace bolted joints[J]. Composite Structures,2014,109:224-230.
    [16] HÜHNE C, ZERBST A K, KUHLMANN G, et al. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures,2010,92(2):189-200. doi: 10.1016/j.compstruct.2009.05.011
    [17] COMER A J, DHÔTE J X, STANLEY W F, et al. Thermo-mechanical fatigue analysis of liquid shim in mechanically fastened hybrid joints for aerospace applications[J]. Composite Structures,2012,94(7):2181-2187. doi: 10.1016/j.compstruct.2012.01.008
    [18] LIU L. The influence of the substrate’s stiffness on the liquid shim effect in composite-to-titanium hybrid bolted joints[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2014,228(3):470-479.
    [19] PAUL D, KELLY L, VENKAYYA V. Evolution of U. S. military aircraft structures technology[J]. Journal of Aircraft,2002,39(1):18-29. doi: 10.2514/2.2920
    [20] GOERING J, BOHLMANN R E, WANEHAL S, et al. Assembly Induced delamination in composite structures[C]//Proceedings of ninth DoD/NASA/FAA Conference on Fibrous Composites in Structural Design. Lake Tahoe: NASA, 1992.
    [21] CAMPONESCHI E T, BOHLMANN R E, FOGARTY J H. Composite to metal joints for the ARPA man-rated demonstration article[J]. Journal of Thermoplastic Composite Materials,1995,8(1):56-79.
    [22] 肖睿恒, 云一珅, 胡坚皓, 等. 一种用于复合材料结构装配填隙补偿分析的方法和装置: 中国, CN108507764A[P]. 2018-09-07.

    XIAO R H, YUN Y S, HU J H, et al. A method and device for gap-filling compensation analysis of composite structure assembly: China, CN108507764A[P]. 2018-09-07(in Chinese).
    [23] THOPPUL S D, FINEGAN J, GIBSON R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures: A review[J]. Composites Science <italic>&</italic> Technology,2009,69(3-4):301-329.
    [24] BRESSON G, JUMEL J, SHANAHAN M E R, et al. Statistical aspects of the mechanical behaviour a paste adhesive[J]. International Journal of Adhesion <italic>&</italic> Adhesives,2013,40(1):70-79.
    [25] 谢鸣九. 复合材料连接[M]. 上海: 上海交通大学出版社, 2011.

    XIE M J. Joints for composites materials[M]. Shanghai: Shanghai Jiaotong University Press, 2011(in Chinese).
    [26] ASTM International. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961M—17[S]. West Conshohocken: ASTM International, 2017.
    [27] 部标准编制组. 部标准《高锁螺栓、螺母》介绍[J]. 航空标准化与质量, 1981(3):1-4.

    Department Standard Establishment Group. The standard of high lock bolt and nut[J]. Aeronautic Standardization <italic>&</italic> Quality,1981(3):1-4(in Chinese).
    [28] KAPIDŽIĆ Z, NILSSON L, ANSELL H. Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures[J]. Composite Structures,2014,109:198-210.
    [29] ZHAI Y N, LI X Q, WANG L, et al. Three-dimensional layer-by-layer stress analysis of single-lap, countersunk composite joints with varying joining interface conditions[J]. Composite Structures,2018,202:1021-1031.
    [30] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints Part I: Model development and validation[J]. Composite Structures,2005,71(2):159-175.
    [31] ATAS A, SOUTI C. Strength prediction of bolted joints in CFRP composite laminates using cohesive zone elements[J]. Composites Part B: Engineering,2014,58:25-34. doi: 10.1016/j.compositesb.2013.10.017
  • 加载中
图(25) / 表(5)
计量
  • 文章访问数:  1007
  • HTML全文浏览量:  307
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 录用日期:  2019-12-02
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回