留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米Si掺杂SiOx-Si@C@碳纳米管复合负极材料的制备及性能

李文超 唐仁衡 肖方明 黄玲 王英

李文超, 唐仁衡, 肖方明, 等. 纳米Si掺杂SiO x-Si@C@碳纳米管复合负极材料的制备及性能[J]. 复合材料学报, 2020, 37(8): 1989-1996. doi: 10.13801/j.cnki.fhclxb.20191206.005
引用本文: 李文超, 唐仁衡, 肖方明, 等. 纳米Si掺杂SiO x-Si@C@碳纳米管复合负极材料的制备及性能[J]. 复合材料学报, 2020, 37(8): 1989-1996. doi: 10.13801/j.cnki.fhclxb.20191206.005
LI Wenchao, TANG Renheng, XIAO Fangming, et al. Preparation and properties of nano-Si doped SiOx-Si@C@carbon nanotubes composite anode materials[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1989-1996. doi: 10.13801/j.cnki.fhclxb.20191206.005
Citation: LI Wenchao, TANG Renheng, XIAO Fangming, et al. Preparation and properties of nano-Si doped SiOx-Si@C@carbon nanotubes composite anode materials[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1989-1996. doi: 10.13801/j.cnki.fhclxb.20191206.005

纳米Si掺杂SiOx-Si@C@碳纳米管复合负极材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20191206.005
基金项目: 广东省科学院专项资金(2019GDASYL-0501008);广州市科技计划(201802020029);广东省自然科学基金(2014A030308015);广东省省级科技计划(2015B010116002)
详细信息
    通讯作者:

    王英,硕士,教授级高工,研究方向为锂离子电池材料 E-mail:wy2228086@163.com

  • 中图分类号: TB332

Preparation and properties of nano-Si doped SiOx-Si@C@carbon nanotubes composite anode materials

  • 摘要: 在对氧化亚硅(SiO)材料进行表面碳包覆和添加导电材料的基础上,掺杂少量纳米Si进一步提高其首次充放电容量和首次库仑效率。采用XRD、SEM、TEM、Raman、FTIR分析材料的物相结构和微观形貌,通过恒流充放电测试仪分析复合材料的电化学性能。结果显示,纳米Si质量为SiOx质量10%的复合材料(SiOx-Si@C@碳纳米管(CNTs)-10)的首次充放电容量分别为1 348.1 mA•h/g和1 874.4 mA•h/g,首次库仑效率为71.9%,循环100周后材料的可逆容量为1 116.2 mA•h/g,容量保持率为82.8%;以不同电流密度充放电,其放电容量远远高于没有纳米Si掺杂的材料。SiOx-Si@C@CNTs复合材料具有较高的首次库伦效率、较好的循环性能和倍率性能。

     

  • 图  1  SiOx@C@CNTs、SiOx-Si@C@CNTs-5、SiOx-Si@C@CNTs-10和SiOx-Si@C@CNTs-15复合材料的XRD图谱(a)、拉曼光图谱(b)和FTIR图谱(c)

    Figure  1.  XRD patterns (a), Raman spectra (b) and FTIR spectra (c) of SiOx@C@CNTs, SiOx-Si@C@CNTs-5, SiOx-Si@C@ CNTs-10 and SiOx-Si@C@CNTs-15 composites

    图  2  SiOx@C@CNTs((a)、(b))、 SiOx-Si@C@CNTs-5((c)、(d))、 SiOx-Si@C@CNTs-10((e)、(f))和 SiOx-Si@C@CNTs-15((g)、(h))复合材料的SEM图像

    Figure  2.  SEM images of SiOx@C@CNTs ((a),(b)), SiOx-Si@C@CNTs-5 ((c),(d), SiOx-Si@C@CNTs-10 ((e),(f)) and SiOx-Si@C@CNTs-15 ((g),(h)) composites

    图  3  SiOx-Si@C@CNTs-10复合材料的TEM图像((a)~(c))和EDS元素扫描图(d)

    Figure  3.  TEM images ((a)-(c)) and EDS element mapping (d) of SiOx-Si@C@CNTs-10 composite

    图  4  SiOx@C@CNTs, SiOx-Si@C@CNTs-5, SiOx-Si@C@CNTs-10和SiOx-Si@C@CNTs-15的循环性能((a)~(d))和倍率性能(e),SiOx-Si@C@CNTs-10的不同循环次数的充放电曲线(f)

    Figure  4.  Cycling performance ((a)-(d)) and rate performance (e) of SiOx@C@CNTs, SiOx-Si@C@CNTs-5, SiOx-Si@C@CNTs-10 and SiOx-Si@C@CNTs-15 composites at various current densities and discharge/charge curves of SiOx-Si@C@CNTs-10 at different cycle numbers (f)

    图  5  SiOx-Si@C@CNTs-10复合材料的交流阻抗曲线(a)和循环伏安曲线(b)

    Figure  5.  Nyquist plots(a) and cycle voltammetry curves(b) of SiOx-Si@C@CNTs-10 composite

    图  6  SiOx-Si@C@CNTs-10复合材料电极充放电前及100周后的SEM图像

    Figure  6.  SEM images of SiOx-Si@C@CNTs-10 composite electrode before and after 100 cycles charge/discharge

    表  1  SiOx-Si@C@CNTs复合材料中增强相的含量

    Table  1.   Contents of reinforcing phases in SiOx-Si@C@CNTs composites

    CompositeSiOx/gNano-Si/gC/gCNTs/g
    SiOx@C@CNTs 400 0 80 8
    SiOx-Si@C@CNTs-5 400 20 80 8
    SiOx-Si@C@CNTs-10 400 40 80 8
    SiOx-Si@C@CNTs-15 400 60 80 8
    Notes: CNTs—Carbon nanotubes.
    下载: 导出CSV
  • [1] HONG L, WANG Z, CHEN L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials,2010,21(45):4593-4607.
    [2] GE M, RONG J, FANG X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters,2012,12(5):2318-2323. doi: 10.1021/nl300206e
    [3] JEONG S, LI X, ZHENG J, et al. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries[J]. Journal of Power Sources,2016,329:323-329. doi: 10.1016/j.jpowsour.2016.08.089
    [4] FEI D, SHI L, SONG P, et al. Design of orderly carbon coatings for SiO anodes promoted by TiO<sub>2</sub> toward high performance lithium-ion battery[J]. Chemical Engineering Journal,2018,338:488-495. doi: 10.1016/j.cej.2018.01.048
    [5] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high capacity Li-ion batteries[J]. Journal of Power Sources,2019,413:20-28. doi: 10.1016/j.jpowsour.2018.12.010
    [6] PARK C M, CHOI W, HWA Y, et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry,2010,20(23):4854-4860. doi: 10.1039/b923926j
    [7] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews,2019,48(1):285-309. doi: 10.1039/C8CS00441B
    [8] WU W, WANG M, WANG R, et al. Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries[J]. Journal of Power Sources,2018,407:112-122. doi: 10.1016/j.jpowsour.2018.10.065
    [9] XU D, CHEN W, LUO Y, et al. Amorphous TiO<sub>2</sub> layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries[J]. Applied Surface Science,2019,479:980-988. doi: 10.1016/j.apsusc.2019.02.156
    [10] YANG W, LIU H, REN Z, et al. A novel multielement, multiphase, and B-containing SiO<sub>x</sub> composite as a stable anode material for Li-ion batteries[J]. Advanced Materials Interfaces,2019,6:1801631. doi: 10.1002/admi.201801631
    [11] DOH C H, SHIN H M, KIM D H, et al. Improved anode performance of thermally treated SiO/C composite with an organic solution mixture[J]. Electrochemistry Communications,2008,10(2):233-237. doi: 10.1016/j.elecom.2007.11.034
    [12] LEE D J, RYOU M H, LEE J N, et al. Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries[J]. Electrochemistry Communications,2013,34(5):98-101.
    [13] SI Q, HANAI K, ICHIKAWA T, et al. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries[J]. Journal of Power Sources,2011,196(22):9774-9779. doi: 10.1016/j.jpowsour.2011.08.005
    [14] LIU W R, YEN Y C, WU H C, et al. Nano-porous SiO/carbon composite anode for lithium-ion batteries[J]. Journal of Applied Electrochemistry,2009,39(9):1643-1649. doi: 10.1007/s10800-009-9854-x
    [15] 李文超, 唐仁衡, 王英, 等. 锂离子电池SiO<italic><sub>x</sub></italic>/C@CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17):2920-2924. doi: 10.11896/j.issn.1005-023X.2018.17.004

    LI Wenchao, TANG Renheng, WANG Ying, et al. Preparation and electrochemical performance of SiO<italic><sub>x</sub></italic>/C@CNTs composite anode for Lithium ion batteries[J]. Materials Reports,2018,32(17):2920-2924(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.17.004
    [16] REN Y, LI M. Si-SiO<sub>x</sub>-cristobalite/graphite composite as anode for Li-ion batteries[J]. Electrochimica Acta,2014,142(142):11-17.
    [17] IZAWA T A, ADITYA F T, SHUTO K, et al. Improving the performance of Li-ion battery carbon anodes by in-situ immobilization of SiO<italic>x</italic> nanoparticles[J]. Materials Research Bulletin,2019,112:16-21. doi: 10.1016/j.materresbull.2018.11.044
    [18] 窦一博, 高明霞, 刘永锋. 高性能Si@SiO<sub>x</sub>@C负极材料的制备及其电化学性能[J]. 材料科学与工程学报, 2016, 34(1):25-31.

    DOU Yibo, GAO Mingxia, LIU Yongfeng. Synthesis of high-performance Si@SiOx@C anode materials and their electrochemical properties[J]. Journal of Materials Science <italic>&</italic> Engineering,2016,34(1):25-31(in Chinese).
    [19] GAN C, WEN S, LIU Y, et al. Preparation of Si-SiO<sub>x</sub> nanoparticles from volatile residue produced by refining of silicon[J]. Waste Management,2019,84:373-382. doi: 10.1016/j.wasman.2018.11.032
    [20] PARK YK, MATHEW B, GYEONG S, et al. Synthesis of Si/SiO<italic><sub>x</sub></italic> from talc and its characteristics as an anode for lithiumion batteries[J]. Journal of Electroanalytical Chemistry,2019,833:552-559. doi: 10.1016/j.jelechem.2018.12.037
    [21] YOM J H, SUN W H, CHO S M, et al. Improvement of irreversible behavior of SiO anodes for lithium ion batteries by a solid state reaction at high temperature[J]. Journal of Power Sources,2016,311:159-166. doi: 10.1016/j.jpowsour.2016.02.025
    [22] YANG X, WEN Z, XU X, et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries[J]. Journal of Power Sources,2007,164(2):880-884. doi: 10.1016/j.jpowsour.2006.11.010
    [23] WU W, LIANG Y, MA H, et al. Insights into the conversion behavior of SiO-C hybrid with pretreated graphite as anodes for Li-ion batteries[J]. Electrochimica Acta,2016,187:473-479. doi: 10.1016/j.electacta.2015.11.008
    [24] TAN H G, DUH J G. Processing silicon microparticles recycled from wafer waste via rapid thermal process for lithium-ion battery anode materials[J]. Journal of Power Sources,2016,335:146-154. doi: 10.1016/j.jpowsour.2016.10.034
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  279
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 录用日期:  2019-11-12
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回