留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矿物组分摩尔比的地质聚合物早期强度形成机制

顾功辉 徐方 周宇 黄晓明 李云凡

顾功辉, 徐方, 周宇, 等. 基于矿物组分摩尔比的地质聚合物早期强度形成机制[J]. 复合材料学报, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004
引用本文: 顾功辉, 徐方, 周宇, 等. 基于矿物组分摩尔比的地质聚合物早期强度形成机制[J]. 复合材料学报, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004
GU Gonghui, XU Fang, ZHOU Yu, et al. Formation mechanism of early strength in geopolymer based on molar ratio of mineral components[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004
Citation: GU Gonghui, XU Fang, ZHOU Yu, et al. Formation mechanism of early strength in geopolymer based on molar ratio of mineral components[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2036-2044. doi: 10.13801/j.cnki.fhclxb.20191206.004

基于矿物组分摩尔比的地质聚合物早期强度形成机制

doi: 10.13801/j.cnki.fhclxb.20191206.004
基金项目: 中国博士后科学基金面上项目(2018M640444);湖北省交通运输厅科技项目(2017-538-1-1);长安大学重点科研平台开放基金(300102219521);中国地质大学(武汉)大学生自主创新资助计划启航项目(1810491Z3);国家级大学生创新训练项目(201810491055)
详细信息
    通讯作者:

    徐方,博士,副教授,研究方向为高性能混凝土结构材料 E-mail:xufang@cug.edu.cn

  • 中图分类号: TB332;TU52

Formation mechanism of early strength in geopolymer based on molar ratio of mineral components

  • 摘要: 通过调控地质聚合物内部的矿物组分SiO2/Al2O3、CaO/Al2O3与Na2O/Al2O3等的摩尔比,采用XRD与SEM观察地质聚合物反应程度与CaSiO3水化反应程度的复合变化规律,探究了地质聚合物反应与CaSiO3水化反应的复合协同作用效果。进一步揭示了地质聚合物的早期强度形成机制。研究表明:地质聚合物反应产物中含有一定量的石英组分,其物理性质和化学性质均十分稳定,强度较高。CaSiO3水化反应产物以水化CaSiO3为主,其内部结构疏松。随着SiO2/Al2O3和CaO/Al2O3摩尔比的增加,地质聚合物反应程度先增加后减少,CaSiO3水化反应程度先增加后趋于稳定且大于地质聚合物反应程度。当SiO2/Al2O3摩尔比为3.8、CaO/Al2O3摩尔比为2.750时,地质聚合物反应与CaSiO3水化反应的复合协同效果最佳,此时地质聚合物内石英质量分数约为66wt%,水化CaSiO3质量分数约为24wt%,力学性能良好。

     

  • 图  1  地质聚合物净浆制备流程图

    Figure  1.  Preparation procedure of geopolymer paste

    图  2  不同矿物组分摩尔比下地质聚合物抗压强度发展趋势

    Figure  2.  Development trend of compressive strengths of geopolymers under different mineral molar ratios

    图  3  不同矿物组分摩尔比地质聚合物抗折强度发展趋势

    Figure  3.  Development trend of flexural strengths of geopolymers under different mineral molar ratios

    图  4  地质聚合物XRD图谱

    Figure  4.  XRD spectra of geopolymers

    图  5  不同矿物组分摩尔比下地质聚合物微观形貌

    Figure  5.  Micro-morphologies of geopolymers with different mineral molar ratios

    图  6  地质聚合物试样SY7的SEM图像(a)和能谱图((b)~(d))

    Figure  6.  SEM image(a) and energy spectra((b)-(d)) of geopolymer specimen SY7

    表  1  粉煤灰和高炉矿渣粉(GGBFS)的化学组成

    Table  1.   Chemical compositions of fly ash and ground granulated blast furnace slag(GGBFS) wt%

    MaterialSiO2Al2O3Fe2O3MgOCaONa2OK2OMnOTiO2Others
    Fly ash 42.34 25.84 5.46 1.17 6.66 1.13 1.05 0.11 1.07 15.17
    GGBFS 29.73 13.58 1.01 6.56 36.39 0.28 0.55 0.09 0.6 11.21
    下载: 导出CSV

    表  2  水玻璃参数

    Table  2.   Properties of water glass

    ColorModulusBaume degree/°BéNa2O/wt%SiO2/wt%
    Transparent3.2439.59.2529
    下载: 导出CSV

    表  3  地质聚合物净浆配合比设计

    Table  3.   Mix design of geopolymer paste

    MixMole ratioWater-solid mass ratioFly ash/gGGBFS/gComplex alkali activator/g
    SiO2/Al2O3CaO/Al2O3Na2O/Al2O3
    SY1 3.4 0.866 0.442 0.3 369.7 69.4 135.8
    SY2 3.5 1.337 0.442 0.3 302.6 140.9 126
    SY3 3.6 1.808 0.442 0.3 244.6 202.7 117.4
    SY4 3.7 2.279 0.442 0.3 194 256.7 110
    SY5 3.8 2.750 0.442 0.3 149.4 304.2 103.4
    SY6 3.9 3.221 0.442 0.3 109.8 346.4 97.6
    SY7 4.0 3.693 0.442 0.3 74.4 384.1 92.4
    下载: 导出CSV

    表  4  不同矿物成分摩尔比地质聚合物抗压强度

    Table  4.   Compressive strengths of geopolymers under different mineral molar ratios

    MixMole ratioWater-solid mass ratioCompressive strength/ MPa
    SiO2/Al2O3CaO/Al2O33 d7 d28 d
    SY1 3.4 0.866 0.3 11.8 19.6 28.1
    SY2 3.5 1.337 0.3 13.5 22.2 30.9
    SY3 3.6 1.808 0.3 27 33.4 38.8
    SY4 3.7 2.279 0.3 36.8 41.2 45.7
    SY5 3.8 2.750 0.3 52.9 57.9 62.6
    SY6 3.9 3.221 0.3 30.4 39 43.9
    SY7 4.0 3.693 0.3 23.1 32.3 36.4
    下载: 导出CSV

    表  5  不同矿物组分摩尔比下地质聚合物抗折强度

    Table  5.   Flexural strengths of geopolymers under different mineral molar ratios

    MixMole ratioWater-solid mass ratioFlexural strength/MPa
    SiO2/Al2O3CaO/Al2O33 d7 d28 d
    SY1 3.4 0.866 0.3 6.1 7.2 8.9
    SY2 3.5 1.337 0.3 6.4 7.6 9.1
    SY3 3.6 1.808 0.3 7.2 8.3 9.6
    SY4 3.7 2.279 0.3 7.9 8.9 10.3
    SY5 3.8 2.750 0.3 9.6 10.2 11.2
    SY6 3.9 3.221 0.3 4.2 5.8 6.9
    SY7 4.0 3.693 0.3 3.1 4.5 5.6
    下载: 导出CSV

    表  6  地质聚合物主要反应产物定量分析

    Table  6.   Quantitative analysis of main reaction products of geopolymers

    SY1SY2SY3SY4SY5SY6SY7
    Mole ratio of SiO2/Al2O3 3.4 3.5 3.6 3.7 3.8 3.9 4
    Mole ratio of CaO/Al2O3 0.866 1.337 1.808 2.279 2.75 3.221 3.693
    Quartz/wt% 25 36 51 61 66 44 31
    Mullite/wt% 30 24 18 10 6 4 3
    CaSiO3 hydrate/wt% 6 13 18 22 24 44 59
    下载: 导出CSV
  • [1] CLOETE S, GIUFFRIDA A, ROMANO M C, et al. The swing adsorption reactor cluster for post-combustion CO<sub>2</sub> capture from cement plants[J]. Journal of Cleaner Production,2019,223:692-703. doi: 10.1016/j.jclepro.2019.03.109
    [2] HE Z, ZHU X, WANG J, et al. Comparison of CO<sub>2</sub> emissions from OPC and recycled cement production[J]. Construction and Building Materials,2019,211:965-973. doi: 10.1016/j.conbuildmat.2019.03.289
    [3] XU F, GU G H, ZHANG W, et al. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method[J]. Ceramics International,2018,44(16):19989-19997. doi: 10.1016/j.ceramint.2018.07.267
    [4] 阚黎黎, 段贝贝, 闫涛. 高延性纤维增强偏高岭土-粉煤灰基地聚合物在不同环境下的自愈合性能[J]. 复合材料学报, 2018, 35(10):2841-2850.

    KAN L L, DUAN B B, YAN T. Self-healing characteristics of engineered geopolymer composites incorporating metakaolin and fly ash under different environments[J]. Acta Materiae Compositae Sinica,2018,35(10):2841-2850(in Chinese).
    [5] BOEKE N, BIRCH G D, NYALE S M, et al. New synthesis method for the production of coal fly ash-based foamed geopolymers[J]. Construction and Building Materials,2015,75:189-199. doi: 10.1016/j.conbuildmat.2014.07.041
    [6] ALOMAYRI T. Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al<sub>2</sub>O<sub>3</sub>)[J]. Journal of Building Engineering,2019,25:100788. doi: 10.1016/j.jobe.2019.100788
    [7] 张云升, 孙伟, 李宗津. PVA短纤维增强粉煤灰-地聚合物基挤压复合材料的动态行为[J]. 复合材料学报, 2009, 26(3):147-154. doi: 10.3321/j.issn:1000-3851.2009.03.026

    ZHANG Y S, SUN W, LI Z J. Dynamical behavior of PVA short fiber reinforced fly ash-geopolymeric extrusion composite[J]. Acta Materiae Compositae Sinica,2009,26(3):147-154(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.026
    [8] 陈潇, 张浩宇, 霍神焕, 等. 壳聚糖改性地聚合物的力学及吸附性能[J]. 复合材料学报, 2019, 36(12):2959-2967.

    CHEN X, ZHANG H Y, HUO S H, et al. Mechanical and adsorption properties of the geopolymer modified by Chitosan[J]. Acta Materiae Compositae Sinica,2019,36(12):2959-2967(in Chinese).
    [9] XU F, DENG X, PENG C, et al. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites[J]. Construction and Building Materials,2017,150:179-189. doi: 10.1016/j.conbuildmat.2017.05.172
    [10] ZHANG Z, PROVIS J L, REID A, et al. Geopolymer foam concrete: An emerging material for sustainable construction[J]. Construction and Building Materials,2014,56:113-127. doi: 10.1016/j.conbuildmat.2014.01.081
    [11] 徐方, 顾功辉, 黄晓明, 等. 地质聚合物泡沫混凝土气孔结构形成机理研究[J/OL]. 建筑材料学报: 1-17[2019-07-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1011.007.html.

    XU F, GU G H, HUANG X M, et al. Investigation on the formation mechanism of pore structure in geopolymer foams[J/OL]. Journal of Building Materials, 1-17[2019-07-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20190716.1011.007.html(in Chinese).
    [12] 徐子芳, 杨政, 张娟. 污泥-高钙煤系废物制备地聚合物的技术与性能[J]. 复合材料学报, 2013, 30(5):113-118. doi: 10.3969/j.issn.1000-3851.2013.05.018

    XU Z F, YANG Z, ZHANG J. Preparation technology and properties of sludge-high calcium coal waste geopolymer[J]. Acta Materiae Compositae Sinica,2013,30(5):113-118(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.018
    [13] HADI M N S, ZHANG H, PARKINSON S. Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability[J]. Journal of Building Engineering,2019,23:301-313. doi: 10.1016/j.jobe.2019.02.006
    [14] SUN K K, PENG X Q, WANG S P, et al. Design method for the mix proportion of geopolymer concrete based on the paste thickness of coated aggregate[J]. Journal of Cleaner Production,2019,232:508-517. doi: 10.1016/j.jclepro.2019.05.254
    [15] CHITHAMBARAM S J, KUMAR S, PRASAD M M. Thermo-mechanical characteristics of geopolymer mortar[J]. Construction and Building Materials,2019,213:100-108. doi: 10.1016/j.conbuildmat.2019.04.051
    [16] MA C, ZHAO B, GUO S, et al. Properties and characterization of green one-part geopolymer activated by composite activators[J]. Journal of Cleaner Production,2019,220:188-199. doi: 10.1016/j.jclepro.2019.02.159
    [17] CHEN X, NIU Z, WANG J, et al. Effect of sodium polyacrylate on mechanical properties and microstructure of metakaolin-based geopolymer with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio[J]. Ceramics International,2018,44(15):18173-18180. doi: 10.1016/j.ceramint.2018.07.025
    [18] 张鹏, 亢洛宜, 魏华, 等. 纳米SiO<sub>2</sub>和PVA纤维对地聚合物砂浆断裂性能的影响[J]. 建筑材料学报, 2019, 22(6):986-992.

    ZHANG P, KANG L Y, WEI H, etal. Effect of nano-SiO<sub>2</sub> and PVA fiber on fracture properties of geopolymer mortar[J]. Journal of Building Materials,2019,22(6):986-992(in Chinese).
    [19] JHONATHAN F R, NUNO C, FERNÁNDEZ-JIMÉNEZ A, et al. Synthesis of alkaline cements based on fly ash and metallurgic slag: Optimisation of the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and Na<sub>2</sub>O/SiO<sub>2</sub> molar ratios using the response surface methodology[J]. Construction and Building Materials,2019,213:424-433. doi: 10.1016/j.conbuildmat.2019.04.097
    [20] SILVA P D, SAGOE-CRENSTIL K, SIRIVIVATNANON V. Kinetics of geopolymerization: Role of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>[J]. Cement and Concrete Research,2007,37(4):512-518. doi: 10.1016/j.cemconres.2007.01.003
    [21] BUMANIS G, VITOLA L, BAJARE D, et al. Impact of reactive SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio in precursor on durability of porous alkali activated materials[J]. Ceramics International,2017,43(7):5471-5477. doi: 10.1016/j.ceramint.2017.01.060
    [22] ZAWRAH M F, FARAG R S, KOHAIL M H. Improvement of physical and mechanical properties of geopolymer through addition of zircon[J]. Materials Chemistry and Physics,2018,217:90-97. doi: 10.1016/j.matchemphys.2018.06.024
    [23] KEPPERT M, VEJMELKOVÁ E, BEZDIČKA P, et al. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content[J]. Applied Clay Science,2018,161:82-89. doi: 10.1016/j.clay.2018.04.019
    [24] 国家质量技术监督局. 水泥胶砂强度检验方法(IOS法): GB/T17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cement-Determination of strength: GB/T17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [25] 彭小芹, 何丽娟. 水热法制备水化硅酸钙纳米粉体[J]. 重庆大学学报(自然科学版), 2005(5):59-62.

    PENG X Q, HE L J. Preparation of hydrated calcium silicate nanopowder by hydrothermal method[J]. Journal of Chongqing University (Natural Science Edition),2005(5):59-62(in Chinese).
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  259
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-10-29
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回