留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能

胡海霞 傅雅琴

胡海霞, 傅雅琴. N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能[J]. 复合材料学报, 2020, 37(6): 1251-1259. doi: 10.13801/j.cnki.fhclxb.20191204.001
引用本文: 胡海霞, 傅雅琴. N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能[J]. 复合材料学报, 2020, 37(6): 1251-1259. doi: 10.13801/j.cnki.fhclxb.20191204.001
HU Haixia, FU Yaqin. Preparation and visible light catalytic performance of N-doped C coated NaTaO3 composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1251-1259. doi: 10.13801/j.cnki.fhclxb.20191204.001
Citation: HU Haixia, FU Yaqin. Preparation and visible light catalytic performance of N-doped C coated NaTaO3 composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1251-1259. doi: 10.13801/j.cnki.fhclxb.20191204.001

N掺杂C包覆NaTaO3复合材料制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20191204.001
基金项目: 浙江省自然科学基金(Y406310);浙江省高等教育“十三五”第一批教改项目(jg20180714)
详细信息
    通讯作者:

    胡海霞,博士,教授,研究方向为复合光催化材料 E-mail:15167019298@163.com

    傅雅琴,博士,教授,博士生导师,研究方向为复合材料及复合技术 E-mail:fyq01@zstu.edu.cn

  • 中图分类号: TB332

Preparation and visible light catalytic performance of N-doped C coated NaTaO3 composites

  • 摘要: 以五氯化钽(TaCl5)、乙酸钠为原料,三聚氰胺为N源,十六烷基三甲基溴化铵(CTAB)和聚乙烯吡咯烷酮(PVP)为表面活性剂,通过溶胶-凝胶法制备了N掺杂C包覆NaTaO3复合材料。采用XRD、TEM、XPS、UV-Vis DRS等对样品进行表征,以罗丹明B(RhB)溶液为目标降解物,测试了不同N比例掺杂的复合材料的吸附性能和光催化性能。结果表明,加入的CTAB和PVP经过N2保护的热处理后在NaTaO3周围形成超薄的碳膜,不仅限制NaTaO3粒径增长,而且提高复合材料对目标污染物的吸附性。N掺杂C包覆NaTaO3复合材料具备良好的可见光催化活性,其中三聚氰胺与TaCl5的摩尔比n为1.5时,制备的N掺杂C包覆NaTaO3复合材料可见光催化效率最高,暗中吸附80 min、可见光照8 h时,RhB的去除率为96.46%,其光催化反应过程符合准一级反应动力学规律。

     

  • 图  1  不同三聚氰胺与TaCl5摩尔比(n)的N掺杂C包覆NaTaO3复合材料的XRD图谱

    Figure  1.  XRD patterns of N-doped C coated NaTaO3 composites with different molar ratios of tripolynitrile amines to TaCl5(n)

    图  2  n=1.5的N掺杂C包覆NaTaO3复合材料的EDS图谱

    Figure  2.  EDS spectra of N-doped C coated NaTaO3 composites with n=1.5

    图  3  N掺杂C包覆NaTaO3复合材料的TEM图像

    Figure  3.  TEM images of N-doped carbon coated NaTaO3 composites

    图  4  不同三聚氰胺与TaCl5摩尔比(n)的N掺杂C包覆NaTaO3复合材料的XPS电子能谱

    Figure  4.  XPS electron spectra of of N-doped C coated NaTaO3 composites with different molar ratios of tripolynitrile amines to TaCl5(n)

    图  5  n=1.5 N掺杂C包覆NaTaO3复合材料和纯NaTaO3的N 1s和C 1s的XPS能谱图

    Figure  5.  XPS electron spectra of N 1s and C 1s of N-doped carbon coated NaTaO3 composite with n=1.5 and pure NaTaO3

    图  6  N掺杂C包覆NaTaO3复合材料紫外-可见漫反射光谱

    Figure  6.  UV-vis diffuse reflectance spectra of N-doped C coated NaTaO3 composites

    图  7  N掺杂C包覆NaTaO3复合材料对罗丹明B(RhB)溶液的吸附动态曲线

    Figure  7.  Adsorption dynamic curves of rhodamine B(RhB) by N-doped C coated NaTaO3 composites

    图  8  N掺杂C包覆NaTaO3复合材料的光催化性能

    Figure  8.  Photocatalytic performance of N-doped C coated NaTaO3 composites

    图  9  N掺杂C包覆NaTaO3复合材料对RhB的光催化过程

    Figure  9.  Photocatalytic process of RhB by N-doped C coated NaTaO3 composites

    图  10  N掺杂C包覆NaTaO3复合材料对RhB溶液的光降解准一级动力学曲线

    Figure  10.  Pseudo first-order kinetic curves of RhB photodegradation by N-doped C coated NaTaO3 composites

    表  1  不同三聚氰胺与TaCl5摩尔比(n)的N掺杂C包覆NaTaO3复合材料的吸收带边波长λg和禁带宽度Eg

    Table  1.   Absorbing band edge wavelength λg and band gap Eg of of N-doped C coated NaTaO3 composites with different molar ratios of tripolynitrile amines to TaCl5(n)

    Sampleλg/nmEg/eV
    n=03173.91
    n=0.53183.90
    n=13203.88
    n=1.53883.20
    n=23923.16
    下载: 导出CSV

    表  2  N掺杂C包覆NaTaO3复合材料对RhB溶液光降解准一级动力学参数

    Table  2.   Pseudo first-order kinetic parameters of RhB photodegradation by N-doped C coated NaTaO3 composites

    Parametersn=0n=0.5n=1n=1.5n=2
    k/min−10.0210.0240.1150.4060.336
    R20.9910.9740.9950.9960.996
    Notes: k—Fit the kinetic constant; R2—Fitting correlation coefficient.
    下载: 导出CSV
  • [1] KATO H, KUDOA. New tantalate photocatalysts for water decomposition into H2 and O2[J]. Chemical Physics Letters,1998,295(5-6):487-492. doi: 10.1016/S0009-2614(98)01001-X
    [2] KATO H, KUDO A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts[J]. Catalysis Letters,1999,58(2):153-155.
    [3] KATO H, KUDO A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3(A = Li, Na, and K)[J]. The Journal of Physical Chemistry B,2001,105(19):4285-4292. doi: 10.1021/jp004386b
    [4] HUC C, TENG H. Influence of structural features on the photocatalytic activity of NaTaO3, powders from different synthesis methods[J]. Applied Catalysis A General,2007,331(1):44-50.
    [5] 刘大锐. 非金属S掺杂对可见光下光催化性能的影响[J]. 无机材料学报, 2018, 33(4):409-415. doi: 10.15541/jim20170252

    LIU D R. Influence of sulfur anion doping on visible-light photocatalytic activity of NaTaO3[J]. Journal of Inorganic Materials,2018,33(4):409-415(in Chinese). doi: 10.15541/jim20170252
    [6] WEI J, JIAO X, CHEN D. Photocatalytic water splitting of surfactant-free fabricated high surface area NaTaO3, nanocrystals[J]. International Journal of Hydrogen Energy,2013,38(29):12739-12746. doi: 10.1016/j.ijhydene.2013.07.072
    [7] KANHERE P D, ZHENGJ, CHEN Z. Site specific optical and photocatalytic properties of Bi-doped NaTaO3[J]. The Journal of Physical Chemistry C,2011,115(23):11846-11853. doi: 10.1021/jp2003936
    [8] LAN N T, PHAN L G, HOANG L H. Hydrothermal synthesis, structure and photocatalytic properties of La/Bi Co-doped NaTaO3[J]. Materials Transactions,2016,57(1):1-4. doi: 10.2320/matertrans.MA201517
    [9] 李文琪, 李霞. 可见光响应S掺杂NaTaO3的制备及其催化性能研究[J]. 硅酸盐通报, 2017, 36(11):3867-3872.

    LI W Q, LI X. Synthesis and photocatalytic propertry of visible light sensitive S-doped NaTaO3[J]. Bulletin of the Chinese Ceramic Society,2017,36(11):3867-3872(in Chinese).
    [10] W UX, YIN S, DONG Q, et al. Preparation and visible light induced photocatalytic activity of C-NaTaO3 and C-NaTaO3-Cl-TiO2 composite[J]. Physical Chemistry Chemical Physics,2013,15(47):20633-20640. doi: 10.1039/c3cp53437e
    [11] 王佳忆, 王学江, 黄嘉瑜, 等. Br-N共掺杂TiO2/磁性炭复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2017, 34(4):890-898.

    WANG J Y, WANG X J, HUANG J Y, et al. Preparation and photocatalytic performance of Br-N codoped TiO2 / magnetic carbon composites[J]. Acta Materiae Compositae Sinica,2017,34(4):890-898(in Chinese).
    [12] 王卫, 陆春华, 苏明星, 等. N掺杂富含(001)晶面TiO2纳米片的制备及N掺杂浓度对可见光催化活性的影响[J]. 催化学报, 2012, 33(4):629-636.

    WANG W, LU C H, SU M X, et al. Synthesis, characterization, and nitrogen concentration depended visible-light photoactivity of nitrogen-doped TiO2 nanosheets with dominant (001) Facets[J]. Chinese Journal of Catalysis,2012,33(4):629-636(in Chinese).
    [13] YANG W, TAN G, REN H, et al. Enhanced photocatalytic of N/F-doped-NaTaO3, photocatalyst synthesized by hydrothermal method[J]. Journal of Materials Science Materials in Electronics,2014,25(9):3807-3815. doi: 10.1007/s10854-014-2093-x
    [14] QI L R, LI X. N-doped NaTaO3: Novel visible-light-driven photocatalysts synthesised by a sol-gel method[J]. Journal of Sol-Gel Science and Technology,2014,69(3):625-629. doi: 10.1007/s10971-013-3264-6
    [15] LIU D R, WEI C D, XUE B, et al. Synthesis and photocatalytic activity of N-doped NaTaO3, compounds calcined at low temperature[J]. Journal of Hazardous Materials,2010,182(1):50-54.
    [16] LIU D R, JIANG Y S, GAO G M. Photocatalytic degradation of an azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process[J]. Chemosphere,2011,83(11):1546-1552. doi: 10.1016/j.chemosphere.2011.01.033
    [17] ZHAO Y X, LIU D R, LI F F, et al. Preparation, characterization and photocatalytic activity of N-doped NaTaO3, nanocubes[J]. Powder Technology,2013,214(1):155-160.
    [18] ZHANG J J, FANG S S, MEI J Y, et al. High-efficiency removal of rhodamine B dye in water using g-C3N4 and TiO2 co-hybridized 3D graphene aerogel composites[J]. Separation and Purification Technology,2018,194:96-103. doi: 10.1016/j.seppur.2017.11.035
    [19] 安兴才, 刘刚, 韩立娟, 等. V-N共掺杂TiO2/凹凸棒土光催化复合材料的制备及光催化性能[J]. 复合材料学报, 2014, 31(2):423-428.

    AN X C, LIU G, HAN L J, et al. Preparation and photocatalytic properties of V-N Co-doped TiO2/attapulgite photocatalytic composites materials[J]. Acta Materiae Compositae Sinica,2014,31(2):423-428(in Chinese).
    [20] 胡海霞, 廖金龙, 朱曜峰, 等. 碳纤维负载NaTaO3光催化复合材料的制备及其性能[J]. 复合材料学报, 2019, 36(6):1501-1508.

    HU H X, LIAO J L, ZHU Y F, et al. Preparation and properties of NaTaO3 deposited on carbon fiber photocatalytic composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1501-1508(in Chinese).
    [21] 涂志江, 张宝林, 冯凌云, 等. 聚乙二醇/聚乙烯吡咯烷酮修饰的纳米Fe3O4粒子的制备与表征[J]. 化工学报, 2012, 63(12):4089-4095. doi: 10.3969/j.issn.0438-1157.2012.12.050

    TU Z J, ZHANG B L, FENG L Y. Synthesis and characterization of Fe3O4 nanoparticles coated with poly (ethylene glycol) and poly (vinyl pyrrolidone)[J]. CIESC Journal,2012,63(12):4089-4095(in Chinese). doi: 10.3969/j.issn.0438-1157.2012.12.050
    [22] YU T, TAN X, ZHAO L. Characterization and mechanistic analysis of the visible light response of cerium and nitrogen co-doped TiO2 nano-photocatalyst synthesized using a one-step technique[J]. Journal of Hazardous Materials,2010,176(1):829-835.
    [23] LAN Y Y, LI X H, ZONG Y, et al. In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber[J]. Ceramics International,2016,42(16):19110-19118. doi: 10.1016/j.ceramint.2016.09.072
    [24] WEI D C, LIU Y Q, WANG Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [25] 王丰, 孔巧平, 周红桃, 等. 炭质吸附剂孔径分布与焦化废水有机组分分离的相关性[J]. 化工进展, 2018, 37(8):384-391.

    WANG F, KONG Q P, ZHOU H T, et al. Correlation between pore-size distribution of carbonaceous sorbent and the separation of organic components in coking wastewater[J]. Industry and Engineering Progress,2018,37(8):384-391(in Chinese).
    [26] YAMAKATAA, ISHIBASHI T, KATO H, et al. Photodynamics of NaTaO3 catalysts for efficient water splitting[J]. Journal of Physical Chemistry B,2003,107(51):14383-14387. doi: 10.1021/jp036473k
    [27] LUAN C Y, WONG T L, ZAPIEN J A. Vertically aligned ZnO nanorods/CdS nanowires branched heterostructures: Cathodoluminescence properties and photovoltaic application[J]. Journal of Crystal Growth,2013,374(Complete):65-70.
    [28] SHAN W P, LIU F D, HE H, et al. An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust[J]. Catalysis Today,2012,184(1):160-165. doi: 10.1016/j.cattod.2011.11.013
    [29] FU H, PAN C, YAO W, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6[J]. Journal of Physical Chemistry B,2005,109(47):22432-224329. doi: 10.1021/jp052995j
    [30] 郭璇, 王宇航. FeCl3改性活性炭对罗丹明B的吸附性能[J]. 西安工程大学学报, 2017, 31(4):474-479.

    GUO X, WANG Y H. Adsorption of Rhodamine B on activated carbon modified by FeCl3[J]. Journal of Xi’an Polytechnic University,2017,31(4):474-479(in Chinese).
    [31] LI X, LI Y, SHEN J, et al. A controlled anion exchange strategy to synthesize Bi2S3, nanoparticles/plate-like Bi2WO6, heterostructures with enhanced visible light photocatalytic activities for Rhodamine B[J]. Ceramics International,2016,42(2):3154-3162. doi: 10.1016/j.ceramint.2015.10.105
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  934
  • HTML全文浏览量:  189
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-11-20
  • 网络出版日期:  2019-12-04
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回