留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用

李燕 孙宝 王爱国 高晗

李燕, 孙宝, 王爱国, 等. TiO2-g-C3N4复合材料的制备及其在水泥石表面中的应用[J]. 复合材料学报, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002
引用本文: 李燕, 孙宝, 王爱国, 等. TiO2-g-C3N4复合材料的制备及其在水泥石表面中的应用[J]. 复合材料学报, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002
LI Yan, SUN Bao, WANG Aiguo, et al. Preparation of TiO2-g-C3N4 composites and its application in cement stone surface[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002
Citation: LI Yan, SUN Bao, WANG Aiguo, et al. Preparation of TiO2-g-C3N4 composites and its application in cement stone surface[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1981-1988. doi: 10.13801/j.cnki.fhclxb.20191129.002

TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用

doi: 10.13801/j.cnki.fhclxb.20191129.002
基金项目: 安徽省科技攻关计划项目(1301042127);安徽建筑大学先进建筑材料安徽省重点实验室开放课题(主任基金) (JZCL201604ZZ)
详细信息
    通讯作者:

    李燕,博士,教授,硕士生导师,研究方向为环境功能材料、高性能水泥基材料 E-mail:lyc171805@163.com

  • 中图分类号: O643.3

Preparation of TiO2-g-C3N4 composites and its application in cement stone surface

  • 摘要: 以Ti(SO4)2和尿素为原料,采用均匀沉淀法及不同煅烧温度制备了TiO2-g-C3N4复合材料。利用XRD和SEM对g-C3N4和TiO2-g-C3N4复合材料的结构及形貌进行了表征,并以模拟太阳光为光源,甲基橙为目标降解物,对其光催化活性进行了研究。将高催化性能的TiO2-g-C3N4复合材料与水泥石表面结合制备了具有光催化性能的水泥石。结果表明:在300℃和400℃条件下煅烧制备的TiO2-g-C3N4复合材料具有牢固异质结,而在500℃条件下煅烧产生N掺杂的TiO2。其中400℃条件下煅烧所得TiO2-g-C3N4复合材料的光催化性能最好,模拟太阳光光照60 min降解率达到91%。通过拟合计算,发现400℃条件下TiO2-g-C3N4复合材料的光催化速率最快。与400℃ TiO2-g-C3N4复合材料结合的水泥石也具有较好的光催化降解性能,模拟太阳光光照240 min降解率可达到90%以上,TiO2-g-C3N4复合材料在400°C可以降低水泥石的初凝终凝时间,并提高其抗压强度。

     

  • 图  1  不同煅烧温度下制备的TiO2-g-C3N4复合材料的照片

    Figure  1.  Photos of TiO2-g-C3N4 composite powders prepared at different calcination temperatures

    图  2  光催化水泥石的照片

    Figure  2.  Photo of photocatalytic cement stone

    图  3  尺寸为40 mm×40 mm×40 mm的水泥石试件外观图

    Figure  3.  Appearance diagram of 40 mm×40 mm×40 mm cement stone test cubes ((a) Photocatalytic cement stone; (b) Ordinary portland cement)

    图  4  g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的XRD图谱

    Figure  4.  XRD patterns of g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  5  g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的SEM图像

    Figure  5.  SEM images of g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures ((a) g-C3N4; (b) TiO2-g-C3N4−3;(c) TiO2-g-C3N4−4; (d) TiO2-g-C3N4-5)

    图  6  TiO2-g-C3N4复合材料制备机制示意图

    Figure  6.  Schematic diagram of the preparation mechanism of TiO2-g-C3N4 composite powders

    图  7  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的紫外-可见吸收光谱

    Figure  7.  UV-visible absorption spectra of TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  8  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料降解甲基橙的降解速率曲线

    Figure  8.  Degradation rate curves of methyl orange degradation by TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    图  9  TiO2-g-C3N4-4复合材料光催化水泥石降解甲基橙的降解速率曲线

    Figure  9.  Degradation rate curves of methyl orange degradation by TiO2-g-C3N4-4 composite photocatalytic cement stone

    图  10  TiO2-g-C3N4复合材料催化降解甲基橙机制

    Figure  10.  Mechanism of catalytic degradation of methyl orange by TiO2-g-C3N4 composite powder

    表  1  不同煅烧温度下制备的TiO2-g-C3N4复合材料样品编号

    Table  1.   Sample numbers of TiO2-g-C3N4 composite powders prepared at different calcination temperatures

    SampleTi(SO4)2/gTemperature/℃g-C3N4/gCO(NH2)2/gH2O/mL
    TiO2-g-C3N4-31.23000.460.920
    TiO2-g-C3N4-41.24000.460.920
    TiO2-g-C3N4-51.25000.460.920
    下载: 导出CSV

    表  2  TiO2、g-C3N4和不同煅烧温度下TiO2-g-C3N4复合材料的拟合方程

    Table  2.   Fitting equations of TiO2, g-C3N4 and TiO2-g-C3N4 composite powders at different calcination temperatures

    SampleFitting equationkR2
    TiO2${\rm In}({C_t}/{C_0}) = - 0.0009t - 0.2183$−0.00090.977
    g-C3N4${\rm In}({C_t}/{C_0}) = - 0.0244t + 1.1728$−0.02440.994
    TiO2-g-C3N4-3${\rm In}({C_t}/{C_0}) = - 0.0290t + 0.004$−0.02900.998
    TiO2-g-C3N4-4${\rm In}({C_t}/{C_0}) = - 0.0305t - 0.183$−0.03050.993
    TiO2-g-C3N4-5${\rm In}({C_t}/{C_0}) = - 0.0133t + 0.0259$−0.01330.990
    Photocatalytic cement stone${\rm In}({C_t}/{C_0}) = - 0.001t - 0.2135$−0.0010.989
    Notes: k—Slope of straight line ; R2—Goodness of fit.
    下载: 导出CSV

    表  3  TiO2-g-C3N4-4复合材料光催化水泥石和普通硅酸盐力学性能

    Table  3.   Mechanical properties of TiO2-g-C3N4-4 composite photocatalytic cement stone and common silicate

    Cement based materialInitial setting time/minFinal setting time/minCompressive strength/MPa
    P·O42.554969128.2
    Photocatalytic cement based51866333.7
    下载: 导出CSV
  • [1] 刘刚, 韩立娟, 陈作雁, 等. V-N共掺杂TiO<sub>2</sub>/玻璃珠光催化复合材料的制备及光催化性能[J]. 复合材料学报, 2017, 34(5):1062-1068.

    LIU G, HAN L J, CHEN Z Y, et al. Preparation and photocatalytic properties of V-N co-doped TiO<sub>2</sub>/glass beads photocatalytic composite[J]. Acta Materiae Compositae Sinica,2017,34(5):1062-1068(in Chinese).
    [2] DU D, SHI W, WANG L, et al. Yolk-shell structured Fe<sub>3</sub>O<sub>4</sub>@void@TiO<sub>2</sub> as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline[J]. Applied Catalysis B: Environmental,2017,200:484-492. doi: 10.1016/j.apcatb.2016.07.043
    [3] 于艳, 姚秉华, 杨帆, 等. TiO<sub>2</sub>-ZnO复合中空微球的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):206-212.

    YU Y, YAO B H, YANG F, et al. Preparation and photocatalytic properties of TiO<sub>2</sub>-ZnO composite hollow microspheres[J]. Acta Materiae Compositae Sinica,2019,36(1):206-212(in Chinese).
    [4] QI K Z, CHENG B, YU J G, et al. A review on TiO<sub>2</sub>-based Z-scheme photocatalysts[J]. Chinese Journal of Catalysis,2017,38(12):1936-1955.
    [5] 王佳忆, 王学江, 黄嘉瑜, 等. Br-N共掺杂TiO<sub>2</sub>/ 磁性炭复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2017, 34(4):890-898.

    WANG J Y, WANG X J, HUANG J Y, et al. Preparation and photocatalytic performance of Br-N codoped TiO<sub>2</sub>/magnetic carbon composites[J]. Acta Materiae Compositae Sinica,2017,34(4):890-898(in Chinese).
    [6] 李燕, 孙宝, 那泽生, 等. TiO<sub>2</sub>/偏高岭土复合粉制备及其光催化性能研究[J]. 非金属矿, 2019, 42(3):79-82. doi: 10.3969/j.issn.1000-8098.2019.03.022

    LI Y, SUN B, NA Z S, et al. Study on preparation of TiO<sub>2</sub>/Metakaolin composite powder and its photocatalytic properties[J]. Non-metallic Mines,2019,42(3):79-82(in Chinese). doi: 10.3969/j.issn.1000-8098.2019.03.022
    [7] ZHU Y, ZHANG Z, LU N, et al. Prolonging charge-separation states by doping lanthanideions into {001}/{101}facets-coexposed TiO<sub>2</sub> nanosheets for enhancing photocatalytic H<sub>2</sub> evolution[J]. Chinese Journal of Catalysis,2019,40(03):413-423. doi: 10.1016/S1872-2067(18)63182-1
    [8] JIANG H L, LIU J, LI M L, et al. Facile synthesis of C-decorated Fe, N co-doped TiO<sub>2</sub> with enhanced visible-light photocatalytic activity by a novel co-precursor method[J]. Chinese Journal of Catalysis,2018,39(4):747-759. doi: 10.1016/S1872-2067(18)63038-4
    [9] ADAMU H, MCCUE A J, TAYLOR R S F, et al. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu<sub>2</sub>O/TiO<sub>2</sub>, and Cu<sub>2</sub>O/TiO<sub>2</sub>-AC composites[J]. Applied Catalysis B: Environmental,2017,217:181-191. doi: 10.1016/j.apcatb.2017.05.091
    [10] NING X, LI J, YANG B, et al. Inhibition of photocorrosion of CdS via assembling with thin film TiO<sub>2</sub> and removing formed oxygen by artificial gill for visible light overall water splitting[J]. Applied Catalysis B: Environmental,2017,212:129-139. doi: 10.1016/j.apcatb.2017.04.074
    [11] LI Y, WANG P, HUANG C, et al. Synthesis and photocatalytic activity of ultrafine Ag<sub>3</sub>PO<sub>4</sub> nano-particles on oxygen vacated TiO<sub>2</sub>[J]. Applied Catalysis B: Environmental,2017,205:489-497. doi: 10.1016/j.apcatb.2016.12.059
    [12] 孙志明, 李雪, 马建宁, 等. 类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2018, 35(6):204-211.

    SUN Z M, LI X, MA J N, et al. Preparation of g-C<sub>3</sub>N<sub>4</sub>/illite composite and its visible-light-driven photocatalytic activity[J]. Acta Materiae Compositae Sinica,2018,35(6):204-211(in Chinese).
    [13] 周银, 张平, 邹赛, 等. 可磁分离 Fe<sub>3</sub>O<sub>4</sub>/C<sub>3</sub>N<sub>4</sub>复合材料的制备及其性能[J]. 复合材料学报, 2018, 35(11):3189-3195.

    ZHOU Y, ZHANG P, ZOU S, et al. Preparation and properties of magnetic separation Fe<sub>3</sub>O<sub>4</sub>/C<sub>3</sub>N<sub>4</sub> composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3189-3195(in Chinese).
    [14] LI F, YU Z, SHI H, et al. A mussel-inspired method to fabricate reduced graphene oxide/g-C<sub>3</sub>N<sub>4</sub>, composites membranes for catalytic dec- omposition and oil-in-water emulsion separation[J]. Chemical Engineering Journal,2017,322:33-45. doi: 10.1016/j.cej.2017.03.145
    [15] LU Z, ZENG L, SONG W, et al. In situ synthesis of C-TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J]. Applied Catalysis B Environmental,2017,202:489-499. doi: 10.1016/j.apcatb.2016.09.052
    [16] CHEN X, WEI J, HOU R, et al. Growth of g-C<sub>3</sub>N<sub>4</sub> on mesoporous TiO<sub>2</sub> spheres with high photocatalytic activity under visible light irradiation[J]. Applied Catalysis B: Environmental,2016,188:342-350. doi: 10.1016/j.apcatb.2016.02.012
    [17] LU L, WANG G, ZOU M, et al. Effects of calcining temperature on formation of hierarchical TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> hybrids as an effective Z-scheme heterojunction photocatalyst[J]. Applied Surface Science,2018,441:1012-1023. doi: 10.1016/j.apsusc.2018.02.080
    [18] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials,2012,22:4763-4770. doi: 10.1002/adfm.201200922
    [19] 何军辉, 姚武. 沸石及水泥基材料二次负载TiO<sub>2</sub>的光催化性能[J]. 建筑材料学报, 2020, 23(1):35-39.

    HE J H, YAO W. Photocatalytic performance of secondarily loading TiO<sub>2</sub> with zeolite and cement based materials[J]. Journal of Building Materials,2020,23(1):35-39(in Chinese).
    [20] 鲁浈浈, 刘栋, 张琪, 等. 负载氮化碳光催化混凝土的制备及性能表征[J]. 建筑材料学报, 2019, 22(4):559-566,583.

    LU Z Z, LIU D, ZHANG Q, et al. The preparation and characterization of photocatalytic concrete loaded with carbon nitride for degradation of automobile exhaust[J]. Journal of Building Materials,2019,22(4):559-566,583(in Chinese).
    [21] 徐名凤, 施惠生, 吴凯. TiO<sub>2</sub>光催化水泥基材料去除氮氧化物研究进展[J]. 新型建筑材料, 2019, 46(5):46-49, 53. doi: 10.3969/j.issn.1001-702X.2019.05.012

    XU M F, SHI H S, WU K. Research development of photocatalytic NOx abatement by TiO<sub>2</sub>-cementitious composites[J]. New Building Materials,2019,46(5):46-49, 53(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.05.012
    [22] 张华森, 李喜宝, 冯志军, 等. 加热温度对尿素水溶液制备类石墨相氮化碳的影响及其机理[J]. 硅酸盐学报, 2018, 46(02):281-287.

    ZHANG H S, LI X B, FENG Z J, et al. Effect of heating temperature on preparation of graphite-like g-C<sub>3</sub>N<sub>4</sub> by pyrolysis of urea aqueous solution and its mechanism[J]. Journal of The Chinese Ceramic Society,2018,46(02):281-287(in Chinese).
    [23] ZHANG G, ZHANG T, LI B, et al. An ingenious strategy of preparing TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalyst: In situ growth of TiO<sub>2</sub> nanocrystals on g-C<sub>3</sub>N<sub>4</sub> nanosheets via impregnation-calcination method[J]. Applied Surface Science,2018,19(23):2012-4.
    [24] WANG H, YUAN X Z, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B: Environmental,2015,174-175:445-454.
    [25] YU Y, GENG J, LI H, et al. Exceedingly high photocatalytic activity of g-C<sub>3</sub>N<sub>4</sub>/Gd-N-TiO<sub>2</sub> composite with nanoscale heterojunctions[J]. Solar Energy Materials and Solar Cells,2017,168:91-99. doi: 10.1016/j.solmat.2017.04.023
    [26] SHEN G D, PU Y P, CUI Y F, et al. Easy synthesis of TiO<sub>2</sub>-g-C<sub>3</sub>N<sub>4</sub> heterostructure photocatalyst with large surface area and excellent photocatalytic Activity[J]. Ceramics International,2017,43:664-670.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  923
  • HTML全文浏览量:  269
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2019-11-05
  • 网络出版日期:  2019-12-02
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回