留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能

孙伟 柏跃磊 张强 刘玉坤 朱春城

孙伟, 柏跃磊, 张强, 等. 碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能[J]. 复合材料学报, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
引用本文: 孙伟, 柏跃磊, 张强, 等. 碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能[J]. 复合材料学报, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
SUN Wei, BAI Yuelei, ZHANG Qiang, et al. Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002
Citation: SUN Wei, BAI Yuelei, ZHANG Qiang, et al. Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1649-1656. doi: 10.13801/j.cnki.fhclxb.20191128.002

碳纳米管-Ti3AlC2/AZ91D复合材料的微观组织及力学性能

doi: 10.13801/j.cnki.fhclxb.20191128.002
基金项目: 黑龙江省自然科学基金重点项目(ZD2017011);国家自然科学基金(51572064);国防基础科研计划(JCKYS2019603C005)
详细信息
    通讯作者:

    朱春城,博士,教授,研究方向为无机复合功能材料 E-mail:Zhuccshs@163.com

  • 中图分类号: TB331

Micro-morphology and mechanical properties of carbon nanotubes-Ti3AlC2/AZ91D composites

  • 摘要: 采用化学镀铜的方法对增强相碳纳米管(CNTs)和Ti3AlC2进行表面改性,热压烧结制备了CNTs-Ti3AlC2/AZ91D复合材料,研究了其微观组织和力学性能的变化及增强机制。结果表明:CNTs-Ti3AlC2/AZ91D复合材料内部主要物相为CNTs、Ti3AlC2、Mg和Al12Mg17,增强相均匀分布在基体内,在增强相与基体的界面处存在U相(MgAlCu),使二者界面结合良好。当增强相CNTs 和Ti3AlC2含量分别为1wt%和25wt%时,较镁合金AZ91D,CNTs-Ti3AlC2/AZ91D复合材料的弹性模量、拉伸强度、屈服强度和延伸率分别提高了120.30%、25.72%、126.50%和36.84%,弯曲强度和压缩强度分别为337.92 MPa和436.27 MPa。CNTs-Ti3AlC2/AZ91D复合材料的断裂方式表现为脆性断裂,其强化机制主要为热配错强化、Orowan强化和细晶强化机制。

     

  • 图  1  CNTs镀铜25 min (a)和Ti3AlC2镀铜20 min(b)的XRD图谱

    Figure  1.  XRD patterns of CNTs copper plating for 25 min (a) and Ti3AlC2 copper plating for 20 min(b)

    图  2  CNTs的TEM图像(a)及镀铜CNTs的TEM图像((b)、(c))和EDS图谱(d)

    Figure  2.  TEM image of CNTs(a) and TEM images((b), (c)) and EDS spectra(d) of copper plating CNTs

    图  3  Ti3AlC2 (a)和Ti3AlC2镀铜20 min(b)的SEM图像

    Figure  3.  SEM images of Ti3AlC2 (a) and copper plating of Ti3AlC2 after 20 min (b)

    图  4  CNTs-Ti3AlC2/AZ91D复合材料的XRD图谱

    Figure  4.  XRD patterns of CNTs-Ti3AlC2/AZ91D composites

    图  5  CNTs-Ti3AlC2/AZ91D复合材料界面的SEM图像、线扫描图谱(a)和界面EDS图谱(b)

    Figure  5.  Interfacial SEM images, linescan maps (a) and interface EDS spectrum (b) of CNTs-Ti3AlC2/AZ91D composites

    图  6  CNTs-Ti3AlC2/AZ91D复合材料高倍断口的SEM图像

    Figure  6.  SEM images of fracture at high power of CNTs-Ti3AlC2/AZ91D composites

    图  7  CNTs-Ti3AlC2/AZ91D复合材料的面扫描图像

    Figure  7.  Surface scanning images of CNTs-Ti3AlC2/AZ91D composites

    图  8  CNTs-Ti3AlC2/AZ91D复合材料的拉伸应力-应变曲线(a)和拉伸载荷-位移曲线(b)

    Figure  8.  Tensile stress-strain curves (a) and tensile load-displacement curves (b) of CNTs-Ti3AlC2/AZ91D composites

    图  9  拉伸试验中CNTs-Ti3AlC2/AZ91D复合材料的变形过程((a), (b), (c))和A区能谱图(d)

    Figure  9.  Deformation process ((a),(b),(c)) and energy spectrum region A (d) of CNTs-Ti3AlC2/AZ91D composites in tensile test

    图  10  CNTs-Ti3AlC2/AZ91D复合材料弯曲断口的SEM图像

    Figure  10.  Flexure fracture SEM images of CNTs-Ti3AlC2/AZ91D composites

    图  11  CNTs-Ti3AlC2/AZ91D复合材料的弯曲应力-应变曲线(a)和压缩应力-应变曲线(b)

    Figure  11.  Flexure stress-strain curves (a) and compressive stress-strain curves (b) of CNTs-Ti3AlC2/AZ91D composite

    表  1  碳纳米管(CNTs)和Ti3AlC2的特征参数

    Table  1.   Characteristic parameters of carbon nanotubes(CNTs) and Ti3AlC2

    MaterialDensity ρ/(g·cm3)UBS/MPaUCS/MPaCTE/10−6 K−1 Purity
    CNTs2.1014×1031.5>98%
    Ti3AlC24.10432±121 037±2110.75798.18%
    Notes: UCS—Ultimate compress strength; UBS—Ultimate flexural strength; CTE—Coefficient of thermal expansion.
    下载: 导出CSV

    表  2  CNTs-Ti3AlC2/AZ91D 复合材料的原料配比

    Table  2.   Raw material mass fraction of CNTs-Ti3AlC2/AZ91D composite

    Number Mass fraction/wt%
    CNTsTi3AlC2AZ91D
    100Margin
    202575
    312574
    Note: CNTs and Ti3AlC2 were copper plated.
    下载: 导出CSV

    表  3  CNTs-Ti3AlC2/AZ91D复合材料力学性能

    Table  3.   Mechanical properties of CNTs-Ti3AlC2/AZ91D composites

    MaterialE/GPa0.2%YS/MPaUTS/MPaElongtion/%UCS/MPaUBS/MPaRef.
    AZ91D 43.00 72.00 143.00 0.95 This work
    Ti3AlC2/AZ91D 98.45 94.00 0.17 365.22 182.02 This work
    CNTs-Ti3AlC2/AZ91D 94.74 163.07 179.78 1.30 436.27 337.92 This work
    TiC(5wt%)-Mg 42.00 123.00 337.00 [10]
    SiC(15wt%)/AZ91D 65.00 125.00 227.00 1.24 [11]
    Ti2AlC(10wt%)/AZ91D 56.00 135.00 215.00 1.90 382.00 [7]
    CNTs(1.5wt%)/AZ91D 64.30 104.00 157.00 1.28 [5]
    Notes: E—Elastic modulus; UTS and 0.2%YS—Tensile strength and tensile yield strength, respectively.
    下载: 导出CSV
  • [1] 李维学, 祝杰, 戴剑锋, 等. 碳纳米管增强镁基复合材料强化机制的解析法研究[J]. 材料导报, 2012, 26(4):131-135. doi: 10.3969/j.issn.1005-023X.2012.04.035

    LI Weixue, ZHU Jie, DAI Jianfeng, et al. An analytical solution for strengthening mechanisms of carbon nanotube reinforced magnesium matrix composites[J]. Materials Review,2012,26(4):131-135(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.04.035
    [2] WANG Y, XU Y, CAO Z, et al. A facile process to manufacture high performance copper layer on ceramic material via biomimetic modification and electroless plating[J]. Composites Part B: Engineering,2019,157:123-130.
    [3] ELBASUNEY S, ZAKY M G, RADWAN M, et al. Synthesis of CuO nanocrystals supported on multiwall carbon nanotubes for nanothermite applications[J]. Journal of Inorganic and Organometallic Polymers and Materials,2019,29:1407-1416.
    [4] GOC K, PRENDOTA W, CHLUBNY L, et al. Structure, morphology and electrical transport properties of the Ti3AlC2 materials[J]. Ceramics International,2018,44(15):18322-18328. doi: 10.1016/j.ceramint.2018.07.045
    [5] LIU Y S, GAO P F, ZHANG Y Q, et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing[J]. Transactions of Nonferrous Metals Society of China (English Edition),2010,20(7):1222-1227.
    [6] YAO X, KOU X, QIU J. Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity[J]. Organic Electronics,2016,38:55-60. doi: 10.1016/j.orgel.2016.07.033
    [7] YU W B, WANG X J, ZHAO H B, et al. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting[J]. Journal of Alloys and Compounds,2017,702:199-208. doi: 10.1016/j.jallcom.2017.01.231
    [8] GOH C S, WEI J, LEE L C, et al. simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes[J]. Materials Science and Engineering A,2006,423(1-2):153-156. doi: 10.1016/j.msea.2005.10.071
    [9] SIMAR A, MERTENS A, RYELANDT S, et al. Mean-field model analysis of deformation and damage in friction stir processed Mg-C composites[J]. Materials Science and Engineering A,2018,723:324-333. doi: 10.1016/j.msea.2018.03.043
    [10] ANASORI B, CASPI E A N, BARSOUM M W. Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles[J]. Materials Science and Engineering A,2014,618:511-522. doi: 10.1016/j.msea.2014.09.039
    [11] ARAVINDAN S, RAO P V, PONAPPA K. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process[J]. Journal of Magnesium and Alloys,2015,3(1):52-62. doi: 10.1016/j.jma.2014.12.008
    [12] BARSOUM M W, ZHEN T, KALIDINDI S R, et al. Fully reversible, dislocation-based compresive deformation of Ti3SiC2 to 1 GPa[J]. Nature Materials,2003,2(2):107-111. doi: 10.1038/nmat814
    [13] GRUBER J, LANG A C, GRIGGS J, et al. Evidence for bulk ripplocations in layered solids[J]. Scientific Reports,2016,6:33451. doi: 10.1038/srep33451
    [14] CAMPBELL J. The origin of griffith cracks[J]. Metallurgical & Materials Transactions B,2011,42(6):1091-1097.
    [15] JHON Y I, KIM C, SEO M, et al. Tensile characterization of single-walled carbon nanotubes with helical structural defects[J]. Scientific Reports,2016,6:20324. doi: 10.1038/srep20324
    [16] CLYNE T W, WITHERS P J. An introduction to metal matrix composites[M]. New York: Cambridge University Press, 1993.
    [17] ASHBY M F. The deformation of plastically non-homogeneous materials[J]. Philosophical Magazine,1970,21(170):399-424. doi: 10.1080/14786437008238426
    [18] GLADMAN T. Precipitation hardening in metals[J]. Materials Science and Technology,1999,15(1):30-36. doi: 10.1179/026708399773002782
    [19] FRANÇOIS L, JÉRÔME W, RICHETON T. Hall-petch law revisited in terms of collective dislocation dynamics[J]. Physical Review Letters,2006,97(7):075504. doi: 10.1103/PhysRevLett.97.075504
    [20] 余永宁. 材料科学基础[M]. 北京: 高等教育出版社, 2006.

    XU Yongning. Material science foundation[M]. Beijing: Higher Education Press, 2006(in Chinese).
    [21] DYBKOV V I. Reaction diffusion and solid statechemical kinetics[M]. Ukraine: The IPMS Publications, 2002.
    [22] MURRAY J L. Phase diagrams of binary magnesium alloys[M]. Ohio: ASM International, 1998.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  766
  • HTML全文浏览量:  227
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 录用日期:  2019-11-01
  • 网络出版日期:  2019-11-28
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回