留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重组竹横向准脆性断裂的断裂参数

谢鹏 刘问 胡雨村 孟鑫淼 张涵政

谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6): 1466-1475. doi: 10.13801/j.cnki.fhclxb.20191127.001
引用本文: 谢鹏, 刘问, 胡雨村, 等. 重组竹横向准脆性断裂的断裂参数[J]. 复合材料学报, 2020, 37(6): 1466-1475. doi: 10.13801/j.cnki.fhclxb.20191127.001
XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber’s transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1466-1475. doi: 10.13801/j.cnki.fhclxb.20191127.001
Citation: XIE Peng, LIU Wen, HU Yucun, et al. Fracture parameters of bamboo scrimber’s transverse quasi-brittle fracture[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1466-1475. doi: 10.13801/j.cnki.fhclxb.20191127.001

重组竹横向准脆性断裂的断裂参数

doi: 10.13801/j.cnki.fhclxb.20191127.001
基金项目: 科技部国家重点研发计划(2017YFC0703502)
详细信息
    通讯作者:

    刘问,博士,副教授,硕士生导师,研究方向为断裂力学、竹木结构 E-mail: liuwen@bjfu.edu.cn

  • 中图分类号: TB332

Fracture parameters of bamboo scrimber’s transverse quasi-brittle fracture

  • 摘要: 重组竹是一种可再生的绿色建筑结构复合材料,具有结构致密均匀、力学性能高强稳定、尺寸因需而定、原材料利用率高等特点,在工程应用方面前景广阔。为研究重组竹横向准脆性断裂的断裂参数,对不同尺寸重组竹单边缺口(SEN)试样进行三点弯曲断裂试验,基于边界效应模型(BEM),引入平均粒径G这一重要的细观结构参量,建立重组竹细观结构与宏观力学性能之间的关系,由试验得到的峰值荷载Pmax计算重组竹横向准脆性断裂的断裂参数,包括抗拉强度ft和断裂韧度KIC。经正态分布分析得到重组竹断裂参数均值μfμK,且在具有96%可靠性范围几乎覆盖了全部试验离散点,结果如下:ft=μf=216.36 MPa,KIC=μK=16.76 MPa·m1/2。并利用实验室常规尺寸试样预测重组竹断裂参数,与试验结果之间的误差仅为3.17%。此外,随着重组竹试样缝高比α的增加,其断裂参数先增大后减小。

     

  • 图  1  三点弯曲试验示意图

    Figure  1.  Schematic diagram of three-point bending test

    图  2  不同高度几何相似重组竹SEN试样示意图

    No.1-6 refers to the sample groups with different heights:No.1:S-10-2.5-0.3; No.2:S-20-2.5-0.3; No.3:S-30-2.5-0.3; No.4:S-50-2.5-0.3; No.5:S-100-2.5-0.3; No.6:S-150-2.5-0.3.

    Figure  2.  Schematic diagram of bamboo scrimbers’ SEN samples with different heights which are geometrically similar

    图  3  相同高度不同缝高比重组竹SEN试样示意图

    Figure  3.  Schematic diagram of bamboo scrimbers’ SEN samples with the same height and different crack length to sample height ratios

    图  4  重组竹破坏断面

    Figure  4.  Fracture failure surface of bamboo scrimber

    图  5  重组竹边界效应模型(BEM)断裂模式一般关系曲线

    Figure  5.  General boundary effect model (BEM) relation curves for fracture failure pattern of bamboo scrimber

    图  6  选择的各组重组竹三点弯曲试验荷载-挠度曲线

    Figure  6.  Selective load-deflection curves of bamboo scrimber by 3-point-bending test

    图  7  重组竹试样S20-2.5-0.3-7的断裂破坏

    Figure  7.  Fracture failure of bamboo scrimbers’ samples S20-2.5-0.3-7

    图  8  重组竹荷载-挠度曲线示意图

    Figure  8.  Schematic diagram of bamboo scrimbers’ load-deflection curve

    图  9  重组竹名义强度σn在虚拟裂纹Δafic上的分布

    Figure  9.  Bamboo scrimbers’ constant normal strength σn distributes over fictitious crack Δafic

    图  10  重组竹抗拉强度ft和断裂韧度KIC的三种分布模型分析结果

    Figure  10.  Three distribution models’ analysis results of bamboo scrimbers’ tensile strength ft and fracture toughness KIC

    图  11  基于正态分布的重组竹Pmax-Aeσn-ae曲线关系预测

    Figure  11.  Bamboo scrimbers’ Pmax-Ae and σn-ae relation prediction based on normal distribution

    图  12  重组竹常规尺寸(W=50 mm)试件预测断裂参数

    Figure  12.  Fracture parameters of bamboo scrimber with conventional size(W=50 mm)

    图  13  不同缝高比重组竹SEN试样的正态分布

    Figure  13.  Normal distribution of bamboo scrimbers’ SEN samples with different crack length to sample height ratios

    表  1  10组不同WS/Wα的重组竹单边缺口(SEN)试样

    Table  1.   Ten groups of bamboo scrimbers’ single-edge-notch (SEN) samples with different W, S/W and α

    Group classGroup No.W/mmB/mmS/mmL/mmS/Wa0/mma0/W
    Different height W with the same span-height ratio S/W and α(a0/W)S-10-2.5-0.3102125752.530.3
    S-20-2.5-0.32021501002.560.3
    S-30-2.5-0.33021751252.590.3
    S-50-2.5-0.350211252252.5150.3
    S-100-2.5-0.3100212503302.5300.3
    S-150-2.5-0.3150213754752.5450.3
    Different α(a0/W) with the same span-height ratio S/W and height WS-50-4-0.15021200280450.1
    S-50-4-0.250212002804100.2
    S-50-4-0.350212002804150.3
    S-50-4-0.450212002804200.4
    Notes: There are three numbers in the Group No. First refers to the specimen height W, the second and the third refer to span-height ratio S/W and α.
    下载: 导出CSV

    表  2  重组竹断裂性能统计描述

    Table  2.   Statistical description of fracture performance of bamboo scrimber

    PropertyTensile strength ftPropertyFracture toughness KIC
    Sample number 86 Sample number 86
    Average vaule/MPa 216.36 Average vaule/(MPa·m1/2) 16.76
    Standard deviation 26.09 Standard deviation 2.021
    Median/MPa 213.24 Median/(MPa·m1/2) 16.52
    Minimum value/MPa 167.05 Minimum value/(MPa·m1/2) 12.94
    Maximum value/MPa 267.93 Maximum value/(MPa·m1/2) 20.75
    Skewness 0.73 Skewness 0.73
    Kurtosis –0.947 Kurtosis –0.947
    下载: 导出CSV
  • [1] SHARMA B, GATÓO A, BOCK M, et al. Engineered bamboo for structural applications[J]. Construction and Building Materials,2015,81:6-73.
    [2] SHARMA B, GATÓO A, BOCK M, et al. Engineered bamboo: State of the art[C]. Proceedings of the institution of Civil Engineers Constriction Materials, 2014.
    [3] HUANG D S, BIAN Y L, ZHOU A P, et al. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys[J]. Construction and Building Materials,2015,77:130-138. doi: 10.1016/j.conbuildmat.2014.12.012
    [4] HUANG D S, BIAN Y L, HUANG D M, et al. An ultimate-state-based-model for inelastic analysis of intermediate slenderness PSB columns under eccentrically compressive load[J]. Construction and Building Materials,2015,94:306-314. doi: 10.1016/j.conbuildmat.2015.06.059
    [5] HUANG D S, ZHOU A P, BIAN Y L. Experimental and analytical study on the nonlinear bending of parallel strand bamboo beams[J]. Construction and Building Materials,2013,44:191-196.
    [6] DUAN K, HU X Z. Specimen boundary induced size effect on quasi-brittle fracture[J]. Strength Fracture Complex,2004(2):47-68.
    [7] 张楚汉, 唐欣薇, 周元德, 等. 混凝土细观力学研究进展综述[J]. 水力发电学报, 2015, 34(12):1-18. doi: 10.11660/slfdxb.20151201

    ZHANG Chuhan, TANG Xinwei, ZHOU Yuande, et al. State-of-the-art literature review on concrete meso-scale mechanics[J]. Journal of Hydroelectric Engineering,2015,34(12):1-18(in Chinese). doi: 10.11660/slfdxb.20151201
    [8] 李冬, 金浏, 杜修力, 等. 考虑材料层次尺寸效应影响的混凝土力学性能理论预测方法[J]. 水力学报, 2018, 49(4):464-473.

    LI Dong, JIN Liu, DU Xiuli, et al. A theoretical method to predict the mechanical properties of concrete considering of the size effect in material[J]. Journal of Hydraulic Engineerin,2018,49(4):464-473(in Chinese).
    [9] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306.

    GUAN Junfeng, HU Xiaozhi, WANG Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering,2016,47(10):1298-1306(in Chinese).
    [10] LIU W, YU Y, HU X Z, et al. Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model[J]. Composite Structures,2019,220:347-354. doi: 10.1016/j.compstruct.2019.04.008
    [11] 杜修力, 金浏, 李东. 混凝土与混凝土结构尺寸效应述评(I): 材料层次[J]. 土木工程学报, 2017, 50(9):28-45.

    DU Xiuli, JIN Liu, LI Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I): Concrete materials[J]. China Civil Engineering Journal,2017,50(9):28-45(in Chinese).
    [12] 高雪阳, 江世永, 飞渭, 等. 高韧性水泥基复合材料强度尺寸效应试验研究与正交分析[J]. 中国材料进展, 2017, 36(6):473-478.

    GAO Xueyang, JIANG Shiyong, FEI Wei, et al. Experimental study and orthogonal analysis of strength size effect of high toughness cementitious composite[J]. Materials China,2017,36(6):473-478(in Chinese).
    [13] BLANK L, FINK G, JOCKWER R, et al. Quasi-brittle fracture and size effect of glued laminated timber beams[J]. European Journal of Wood and Wood Products,2017,75:667-681. doi: 10.1007/s00107-017-1156-0
    [14] 上官蔚蔚. 重组竹物理力学性质基础研究[D]. 北京: 中国林业科学研究院, 2015.

    SHANGGUAN Weiwei. Research on physical and mechanical properties of bamboo scrimber[D]. Beijing: Chinese Academy of Forestry, 2015(in Chinese).
    [15] 魏洋, 纪雪微, 端茂军, 等. 重组竹轴向应力-应变关系模型[J]. 复合材料学报, 2018, 35(3):572-579.

    WEI Yang, JI Xuewei, DUAN Maojun, et al. Model for axial stress-strain relationship of bamboo scrimber[J]. Acta Materiae Compositae Sinica,2018,35(3):572-579(in Chinese).
    [16] 魏洋, 周梦倩, 袁礼得. 重组竹柱偏心受压力学性能[J]. 复合材料学报, 2016, 33(2):379-385.

    WEI Yang, ZHOU Mengqian, YUAN Lide. Mechanical performance of glulam bamboo columns under eccentric loading[J]. Acta Materiae Compositae Sinica,2016,33(2):379-385(in Chinese).
    [17] 杨蕾, 周爱萍, 黄东升, 等. 基于VIC-3D的重组竹I型断裂参数确定方法[J]. 南京工业大学学报(自然科学版), 2016, 38(5):104-110.

    YANG Lei, ZHOU Aiping, HUANG Dongsheng, et al. Determination of mode-I fracture parameters of parallel strand bamboo based on VIC-3D technology[J]. Journal of Nanjing Tech University (Natural Science Edition),2016,38(5):104-110(in Chinese).
    [18] GATÓO A, SHARMA B, BOCK M, et al. Sustainable structures: Bamboo standards and building codes[J]. Proceedings of the Institution of Civil Engineers Sustainability,2014,167(5):189-196. doi: 10.1680/ensu.14.00009
    [19] American Society for Testing and Materials. Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials: ASTM E399-12e2[S]. Philadephia: American Society for Testing and Materials, 2013.
    [20] XU S L, REINHARDT H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: Experimental investigation of crack propagation[J]. Fracture,1999,98(2):111-149. doi: 10.1023/A:1018668929989
    [21] HU X Z, DUAN K. Size effect and quasi-brittle fracture: The role of FRP[J]. International Journal of Fracture,2008,154(1-2):3-14. doi: 10.1007/s10704-008-9290-7
    [22] ZHANG C G, HU X Z, WU Z M, et al. Influence of grain size on granite strength and toughness with reliability by normal distribution[J]. Theoretical and Applied Fracture Mechanics,2018,96:534-544. doi: 10.1016/j.tafmec.2018.07.001
    [23] 管俊峰, 王强, 胡晓智, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30.

    GUAN Junfeng, WANG Qiang, HU Xiaozhi, et al. Boundary effect frature model for concrete and granite considering aggregate size[J]. Engineering Mechanics,2017,34(12):22-30(in Chinese).
    [24] 管俊峰, 胡晓智, 李庆斌, 等. 边界效应与尺寸效应模型的本质区别及相关设计应用[J]. 水利学报, 2017, 48(8):955-967.

    GUAN Junfeng, HU Xiaozhi, LI Qingbin, et al. Essential difference and design application of boundary effect model and size effect model[J]. Journal of Hydraulic Engineering,2017,48(8):955-967(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  217
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-10-05
  • 网络出版日期:  2019-11-28
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回