留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiCo2O4纳米线/SiC复合纤维制备及其电化学性能

朱彬 刘盼 吕东风 崔燚 魏恒勇 陈越军 魏颖娜 卜景龙

朱彬, 刘盼, 吕东风, 等. NiCo2O4纳米线/SiC复合纤维制备及其电化学性能[J]. 复合材料学报, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001
引用本文: 朱彬, 刘盼, 吕东风, 等. NiCo2O4纳米线/SiC复合纤维制备及其电化学性能[J]. 复合材料学报, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001
ZHU Bin, LIU Pan, LV Dongfeng, et al. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001
Citation: ZHU Bin, LIU Pan, LV Dongfeng, et al. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694. doi: 10.13801/j.cnki.fhclxb.20191121.001

NiCo2O4纳米线/SiC复合纤维制备及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20191121.001
基金项目: 国家自然科学基金(51472072);华北理工大学杰出青年基金(JQ201712)
详细信息
    通讯作者:

    魏恒勇,博士,教授,硕士生导师,研究方向为超级电容器材料 E-mail:why_why2000@163.com

  • 中图分类号: TB34;O613.72+1

Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber

  • 摘要: 以正硅酸乙酯(TEOS)为硅源,聚乙烯吡咯烷酮(PVP)为助纺剂,采用静电纺丝结合碳热还原制备出结晶度较高的β-SiC纤维,其比表面积为92.6 m2/g,表现出双电层电容储能特征,比电容为155.7 F/g。然后,利用水热法在SiC纤维表面生长出大量直径约为15 nm的NiCo2O4纳米线,得到NiCo2O4纳米线/SiC复合纤维。测试表明,NiCo2O4纳米线/SiC复合纤维中镍和钴元素分别以Ni2+/Ni3+和Co2+/Co3+价态形式存在,由于NiCo2O4纳米线与SiC纤维的协同作用,NiCo2O4纳米线/SiC复合纤维比电容显著提高,并表现出双电层和赝电容并存的特征,比电容可达300.3 F/g,当功率密度为58.1 W/kg时,NiCo2O4纳米线/SiC复合纤维能量密度为60.1 W·h/kg。

     

  • 图  1  SiC纤维及NiCo2O4纳米线/SiC复合纤维XRD图谱(a)及NiCo2O4纳米线​​​​​​​/SiC复合纤维的多峰高斯拟合图谱(b)

    Figure  1.  XRD patterns of SiC fiber and NiCo2O4 nanowire/SiC composite fiber(a) and muti-peak Guassian fitting spectrum of NiCo2O4 nanowire/SiC composite fiber(b)

    图  2  NiCo2O4纳米线/SiC复合纤维的XPS图谱

    Figure  2.  XPS spectra of NiCo2O4 nanowire/SiC composite fiber

    图  3  SiC纤维(a)及NiCo2O4纳米线/SiC复合纤维(b) 的SEM图像和EDS图谱

    Figure  3.  SEM images and EDS spectra of SiC fiber(a) and NiCo2O4 nanowire/SiC composite fiber(b)

    图  4  SiC纤维及NiCo2O4纳米线/SiC复合纤维的N2吸附-脱附曲线(a)及孔径分布曲线(b)

    Figure  4.  N2 adsorption-desorption curves(a) and pore size distribution curves of SiC fiber and NiCo2O4 nanowire/SiC composite fibers(b)

    图  5  SiC纤维(a)和NiCo2O4纳米线/SiC(b)复合纤维电极的循环伏安(CV)曲线

    Figure  5.  Cyclic voltammetry(CV) curves of SiC fiber(a) and NiCo2O4 nanowire/SiC composite fiber(b) electrode

    图  6  SiC纤维(a)和NiCo2O4纳米线/SiC复合纤维(b)电极1.2 V窗口电压在2 mV/s扫描速率下电容电荷存储贡献及NiCo2O4/SiC复合纤维电极0.6 V窗口电压在2 mV/s扫描速率下电容电荷存储贡献(c)

    Figure  6.  Capacitance charge storage contributions of SiC fiber (a) and NiCo2O4 nanowire/SiC composite fiber (b) electrodes at 1.2 V window voltage and 2 mV/s scan rate and capacitance charge storage contribution of NiCo2O4 nanowire/SiC composite fiber electrodes at 0.6 V window voltage and 2 mV/s scan rate (c)

    图  7  SiC电极(a)和NiCo2O4/SiC电极(b)充放电曲线、SiC和NiCo2O4/SiC电极在50 mA/g电流密度下充放电曲线(c)和充放电与电流密度关系曲线(d)

    Figure  7.  Charge-discharge curves of SiC electrode (a) and NiCo2O4/SiC electrode (b), charge-discharge curves at current density of 50 mA/g (c) and current density dependence of specific capacitance (d) of SiC and NiCo2O4/SiC electrodes

    图  8  SiC和NiCo2O4/SiC电极的阻抗图谱

    Figure  8.  Electrochemical impedance spectroscopy of SiC and NiCo2O4/SiC electrodes

    图  9  SiC(a)及NiCo2O4/SiC(b)电极的能量密度曲线

    Figure  9.  Energy density curves of SiC(a) and NiCo2O4/SiC(b) electrodes

    图  10  SiC及NiCo2O4/SiC电极的循环寿命曲线(a)、SiC(b)和NiCo2O4/SiC(c)电极在100 mA/g电流密度下循环前后充放电曲线、SiC和NiCo2O4/SiC电极循环后阻抗图谱(d)

    Figure  10.  Cycling performance of SiC and NiCo2O4/SiC electrodes (a), Charge-discharge curves of SiC (b) and NiCo2O4/SiC (c) electrodes before and after cycling at 100 mA/g current density, electrochemical impedance spectroscopy of SiC and NiCo2O4/SiC electrodes after cycling (d)

    表  1  SiC纤维及NiCo2O4纳米线/SiC复合纤维的孔结构特征参数

    Table  1.   Pore structure characteristic parameters of SiC fiber and NiCo2O4 nanowire/SiC composite fibers

    FiberSpecific surface area/(m2·g–1)Average pore diameter/nmPore volume/(cm3·g–1)
    SiC 92.6 4.6 0.1
    NiCo2O4/SiC 233.2 7.0 0.4
    下载: 导出CSV
  • [1] MANN M E, BRADLEY R S, HUGHES M K. Global-scale temperature patterns and climate forcing over thepast six centuries[J]. Nature,1998,392:779-787. doi: 10.1038/33859
    [2] MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science,2008,321(5889):651-652. doi: 10.1126/science.1158736
    [3] YANG P H, CHAO D L, ZHU C R, et al. Ultrafast-Charging supercapacitors based on corn-like titanium nitride nanostructures[J]. Advanced Science,2016,3(6):1500299. doi: 10.1002/advs.201500299
    [4] GUO X, YAN K, FAN F, et al. Controllable synthesis of a NiO hierarchical microspheres/nanofibers composites assembled on nickel foam for supercapacitor[J]. Materials Letters,2019,240:62-65. doi: 10.1016/j.matlet.2018.12.117
    [5] CAI G F, WANG X, CUI M Q, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy,2015,12:258-267. doi: 10.1016/j.nanoen.2014.12.031
    [6] HU H, GUAN B Y, XIA B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced-pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society,2015,137(16):5590-5595. doi: 10.1021/jacs.5b02465
    [7] KUMAR M, SUBRAMANIA A, BALAKRISHNAN K. Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors[J]. Electrochimica Acta,2014,149:152-158. doi: 10.1016/j.electacta.2014.10.021
    [8] ZHAO J, LI Z, YUAN X, et al. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4 /Ni(OH)2 hybrid nanosheetarrays grown on SiC nanowire networks as free-standing advanced electrodes[J]. Advanced Energy Materials,2018,8(12):1702787. doi: 10.1002/aenm.201702787
    [9] YI H, CHEN X, WANG H W, et al. Hierarchical TiN@Ni(OH)2 core/shell nanowire arrays for supercapacitor application[J]. Electrochim Acta,2014,116:372-378. doi: 10.1016/j.electacta.2013.11.083
    [10] YANG S, SONG X, ZHANG P, et al. Self-assembled α-Fe2O3 mesocrystals/graphene nano hybrid for enhanced electrochemical capacitors[J]. Small,2014,10(11):2270-2279. doi: 10.1002/smll.201303922
    [11] YANG S, LIN Y, SONG X, et al. Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces,2015,7(32):17884-17892.
    [12] CHAUDHARI N K, CHAUDHARI S, YU J S. Cube-like α-Fe2O3 supported o nordered multimodal porous carbon as high performance electrode material for super-capacitors[J]. ChemSusChem,2014,7(11):3102-3111. doi: 10.1002/cssc.201402526
    [13] YANG X, SUN H, ZHANG L, et al. High efficient photo-fentoncatalyst of α-Fe2O3/MoS2 hierarchical nanoheterostru ctures: Reutilization for supercapacitors[J]. Scientific Reports,2016,6(1):31591. doi: 10.1038/srep31591
    [14] LEE J H, LIM J Y, CHANG S L, et al. Direct growth of NiO nanosheets on mesoporous TiN film for energy storage devices[J]. Applied Surface Science,2017,420:849-857. doi: 10.1016/j.apsusc.2017.05.216
    [15] XIE S, GUO X N, JIN G Q, et al. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chemical Communications,2014,50(2):228-230. doi: 10.1039/C3CC47019A
    [16] MYEONGJIN K, JOOHEON K. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodesas electrochemical supercapacitors[J]. Nanotechnology,2017,28(19):195401. doi: 10.1088/1361-6528/aa6812
    [17] KIM M, YOO Y, KIM J. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors[J]. Journal of Power Sources,2014,265:214-222. doi: 10.1016/j.jpowsour.2014.04.132
    [18] KIM M, KIM J. Redox active KI solid-state electrolyte for battery-like electrochemical capacitive energy storage based on MgCo2O4 nanoneedles on porous β-polytype silicon carbide[J]. Electrochimica Acta,2018,260:921-931. doi: 10.1016/j.electacta.2017.12.069
    [19] ZHAO J, LI Z J, ZHANG M, et al. Direct growth of ultrathin NiCo2O4/NiO nanosheetson SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors[J]. Acs Sustainable Chemistry & Engineering,2016,4(7):3598-3608.
    [20] 颜贵龙. 碳化硅微纳米纤维的制备及其性能研究[D]. 天津: 天津工业大学, 2012.

    YAN G L. Preparation and properties of silicon carbide micro-nano fibers[D]. Tianjin: Tianjin Polytechnic University, 2012(in Chinese).
    [21] ZHAO Y X, KANG W, LI L, et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors[J]. Electrochimica Acta,2016,207:257-265. doi: 10.1016/j.electacta.2016.05.003
    [22] CHEN H, SU Y Z, KUANG P Y, et al. Hierarchical NiCo2O4 nanosheets decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation[J]. Journal of Materials Chemistry A,2015,3(38):19314-19321.
    [23] XIONG L P, XU Y S, LI Y. Performance of SiC fibers synthesized with neutron irradiation curing method[J]. Nuclear Techniques,2009,32(9):675-678.
    [24] KOLATHODI M S, PALEI M, NATARAJAN T S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2015,3(14):7513-7522. doi: 10.1039/C4TA07075E
    [25] 闻刚. 纳米氮化钛膜的制备及其在全钒液流电池中的应用[D]. 杭州: 浙江工业大学, 2017.

    WEN G. Preparation of nano titaniumnitride film and its application in all vanadium redox flow battery[D]. Hangzhou: ZhejiangUniversity of Technology, 2017(in Chinese).
    [26] 李玲, 张雪, 李晶, 等. 碳纳米纤维负载Co3S4复合材料的合成及其在染料敏化太阳电池对电极的应用[J]. 无机化学学报, 2017, 33(4):607-614. doi: 10.11862/CJIC.2017.084

    LI L, ZHANG X, LI J, et al. Synthesis of carbon nanofiber-loaded Co3S4 composite and its application in dye-sensitized solar cell counter electrode[J]. Journal of Inorganic Chemistry,2017,33(4):607-614(in Chinese). doi: 10.11862/CJIC.2017.084
    [27] LIU X Y, ZHANG Y Q, XIA X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources,2013,239:157-163.
    [28] 米娟, 李文翠. 不同测试技术下超级电容器比电容值的计算[J]. 电源技术, 2014, 38(7):1394-1398. doi: 10.3969/j.issn.1002-087X.2014.07.064

    MI J, LI W C. Capacitance calculation of supercapacitors based on different test technologies[J]. Chinese Journal of Power Sources,2014,38(7):1394-1398(in Chinese). doi: 10.3969/j.issn.1002-087X.2014.07.064
    [29] 李飞贞, 高康乐, 解迪, 等. 活性炭负载铁钴电催化氧化焦化废水生化尾水的研究[J]. 环境污染与防治, 2017, 39(4):356-361.

    LI F Z, GAO K L, XIE D, et al. Study on electrolytic oxidation of biochemical tail water from coking waste water by activated carbon supported iron and cobalt[J]. Environmental pollution and prevention,2017,39(4):356-361(in Chinese).
    [30] XIE S, TONG X L, JIN G Q, et al. CNT-Ni/SiC hierarchical nanostructures: Preparation and their application in electrocatalytic oxidation of methanol[J]. Journal of Materials Chemistry A,2013,1(6):2104-2109. doi: 10.1039/C2TA01002J
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1097
  • HTML全文浏览量:  203
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-11-20
  • 网络出版日期:  2019-11-21
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回