留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能

周可可 唐亚丽 卢立新 潘嘹 丘晓琳

周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
引用本文: 周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003
Citation: ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1657-1666. doi: 10.13801/j.cnki.fhclxb.20191120.003

氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能

doi: 10.13801/j.cnki.fhclxb.20191120.003
基金项目: 国家自然科学基金(31671909)
详细信息
    通讯作者:

    唐亚丽,博士,副教授,硕士生导师,研究方向为食品包装材料与制品 E-mail:tangyali35@126.com

  • 中图分类号: TB324;TB332

Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose

  • 摘要: 以2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)氧化松木粉纳米纤维素(TOCNs)为增强相、α-纤维素粉制备再生纤维素(RC)为基体,采用溶胶-凝胶法制备氧化纳米纤维素增强再生纤维素(TOCNs/RC)全纤维素复合薄膜。对不同TOCNs添加量下TOCNs/RC全纤维素复合薄膜的力学性能、光学性能、氧气阻隔性能和热稳定性能进行研究,并通过FTIR、SEM、TEM、XRD和流变仪对TOCNs和TOCNs/RC全纤维素复合薄膜的结构、形貌及纤维素溶液流变性能进行表征。结果表明,TOCNs添加量对TOCNs/RC全纤维素复合薄膜的力学性能有显著影响,当TOCNs添加量(与纤维素基体的质量比)为1.0%时,TOCNs/RC全纤维素复合薄膜的拉伸强度和断裂能分别可达134.3 MPa和21.51 MJ·m−3,具有最佳的综合力学性能;TOCNs/RC全纤维素复合薄膜的透光率随TOCNs添加量的增加而下降,雾度随TOCNs添加量的增加而增大,但仍保持较高的透光率(>85%)和较低的雾度(<14%);TOCNs/RC全纤维素复合薄膜还具有优异的氧气阻隔性,TOCNs添加量为1.6%时,其透氧系数仅为1.47×10−17cm3·cm/cm2·s·Pa。TOCNs/RC全纤维素复合薄膜有优于一般塑料薄膜的拉伸强度和氧气阻隔性,并有可媲美于塑料薄膜的透明度,可作软包装复合材料的强度层和阻隔层,在绿色高性能包装材料领域具有广阔的应用前景。

     

  • 图  1  不同TOCNs添加量的TOCNs/再生纤维素(RC)复合膜的力学性能

    Figure  1.  Mechanical properties of TOCNs/regenerated cellulose(RC) composite films with different mass ratios of TOCNs

    图  2  不同TOCNs添加量的TOCNs/RC复合膜的应力-应变曲线和断裂能

    Figure  2.  Stress-strain curves and fracture energies of TOCNs/RC composite films with different mass ratios of TOCNs

    图  3  不同TOCNs添加量的TOCNs/RC复合膜在900~200 nm波长的透光率(a)、雾度及800 nm波长处透光率(b)

    Figure  3.  Transmittance at 900–200 nm wavelength(a), haze and transmittance at 800 nm wavelength(b) of TOCNs/RC composite films with different mass ratios of TOCNs

    图  4  不同TOCNs添加量的TOCNs/RC复合膜的宏观光学照片

    Figure  4.  Macro optical photos of TOCNs/RC composite films with different mass ratios of TOCNs

    图  5  不同TOCNs添加量的TOCNs/RC复合膜的TG(a)和DTG(b)曲线

    Figure  5.  TG(a) and DTG(b) curves of TOCNs/RC composite films with different mass ratios of TOCNs

    图  6  不同TOCNs添加量的TOCNs/RC复合膜的FTIR图谱

    Figure  6.  FTIR spectra of TOCNs/RC composite films with different mass ratios of TOCNs

    图  7  不同TOCNs添加量的TOCNs/RC复合膜的XRD图谱

    Figure  7.  XRD patterns of TOCNs/RC composite films with different mass ratios of TOCNs

    图  8  TOCNs和TOCNs/RC复合膜的TEM和SEM图像

    Figure  8.  TEM and SEM images of TOCNs and TOCNs/RC composite films

    图  9  纤维素溶液黏度随剪切速率变化

    Figure  9.  Viscosity of cellulose solution changing with shear rate

    图  10  纤维素溶液的应变扫描曲线(a)和频率扫描曲线(b)

    Figure  10.  Oscillation strain curves(a) and oscillation frequency curves(b) of cellulose solution

    表  1  氧化纳米纤维素(TOCNs)与纤维素基体的质量比

    Table  1.   Mass ratios of oxidized cellulose nanofibrils (TOCNs) to cellulose matrix

    SampleMass ratio of TOCNs/%TOCNs/DMAc solution/%Cellulose solution/%
    TOCNs0.0/RC 0 0 100
    TOCNs0.5/RC 0.5 5 100
    TOCNs1.0/RC 1.0 10 100
    TOCNs1.6/RC 1.6 16 100
    TOCNs2.4/RC 2.4 24 100
    Notes: RC—Regenerated cellulose; DMAc—N,N-dimethylace-tamide.
    下载: 导出CSV

    表  2  不同TOCNs添加量的TOCNs/RC复合膜的透氧量(OP)和透氧系数(OPC)

    Table  2.   Oxygen permeanbility(OP) and oxygen permeability coefficient(OPC) of TOCNs/RC composite films with different mass ratios of TOCNs

    Mass ratio of TOCNs/%OP/
    (10−6 cm3·m2·d·Pa)
    OPC/
    10−17 (cm3·cm·cm2·s·Pa)
    0 4.79±0.8 2.21±0.4
    0.5 4.20±0.6 1.93±0.1
    1.0 4.14±0.4 1.51±0.2
    1.6 3.98±1.0 1.47±0.8
    2.4 4.31±1.6 1.81±1.0
    下载: 导出CSV

    表  3  不同TOCNs含量的TOCNs/RC复合膜的热重数据

    Table  3.   Thermogravinmetric data of TOCNs/RC composite films with different mass ratios of TOCNs

    Mass ratio of TOCNs/%Td/℃Tmax /℃
    0 276.35 295.82
    0.5 273.42 291.05
    1.0 280.16 298.54
    1.6 274.02 291.90
    2.4 273.61 289.28
    Notes: Td—Epitaxial initial decomposition temperature; Tmax—Maximum decomposition temperature.
    下载: 导出CSV
  • [1] SOYKEABKAW N, ARIMOTO N, NISHINO T, et al. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres[J]. Composites Science and Technology,2008,68(10-11):2201-2207.
    [2] CHENG J F, WANG H L, KANG S L, et al. An active packaging film based on yam starch with eugenol and its application for pork preservation[J]. Food Hydrocolloids,2019,96:546-554. doi: 10.1016/j.foodhyd.2019.06.007
    [3] JANCIKOVA S, JAMROZ E, KULAWIK P, et al. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials[J]. International Journal of Biological Macromolecules,2019,131:19-28. doi: 10.1016/j.ijbiomac.2019.03.050
    [4] KAMDEM D P, SHEN Z, NABINEJAD O, et al. Development of biodegradable composite chitosan-based films incorporated with xylan and carvacrol for food packaging application[J]. Food Packaging and Shelf Life,2019,21:100344.
    [5] DUCHEMIN B J C, MATHEW A P, OKSMAN K. All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride[J]. Composites Part A: Applied Science and Manufacturing,2009,40(12):2031-2037. doi: 10.1016/j.compositesa.2009.09.013
    [6] 盛超. 壳聚糖基纳米纤维素增强席夫碱型水凝胶的制备和性能研究[D]. 杭州: 浙江理工大学, 2017.

    SHENG C. Preparation and properties of chitosan-based nanocellulose-enhanced schiff hydrogels[D]. Hangzhou: Zhejiang Institute of Technology, 2017(in Chinese).
    [7] 李静. 纳米纤维素的疏水改性及其在制浆造中的应用[D]. 济南: 齐鲁工业大学, 2014.

    LI J. Hydrophobic modification of nanocellulose and its application in pulping[D]. Ji’nan: Qilu University of Technology, 2014(in Chinese).
    [8] YADAV C, SAINI A, MAJI P K. Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer[J]. Cellulose,2018,25:449-461. doi: 10.1007/s10570-017-1567-4
    [9] NAGTANI A. Characteristics & applications of cellulose nanofiber reinforced rubber composites[J]. International Polymer Science and Technology,2017,44(7):1-8.
    [10] 杨鑫, 李学敏, 王奉强, 等. 木质素-木粉/高密度聚乙烯复合材料的制备及阻燃性能[J]. 复合材料学报, 2020, 37(3):530-538.

    YANG X, LI X M, WANG F Q, et al. Preparation and flame retardancy of lignin-wood fiber/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2020,37(3):530-538(in Chinese).
    [11] 韩青, 杨革生, 于敏敏, 等. 玉米秸秆纤维素增强聚乳酸复合材料的制备及其界面改性[J]. 纤维素科学与技术, 2019, 27(1):17-22, 30.

    HAN Q, YANG G S, YU M M, et al. Preparation and interfacial modification of corn stalk cellulose reinforced polylactic acid composites[J]. Journal of Cellulose Science and Technology,2019,27(1):17-22, 30(in Chinese).
    [12] NISHINO T, MATSUDA I, HIRAO K. All-cellulose composites[J]. Macromolecules,2004,37(20):7683-7687.
    [13] YOUSEFI H, MASHKOUR M, YOUSEFI R. Direct solvent nanowelding of cellulose fibers to make all cellulose nanocomposite[J]. Cellulose,2015,22:1189-1200.
    [14] LI J Y, NAWAZ H, WU J, et al. All-cellulose composites based on the self-reinforced effect[J]. Composites Communications,2018,9:42-53.
    [15] TANPICHAI S. A comparative study of nanofibrillated cellulose and microcrystalline cellulose as reinforcements in all-cellulose composites[J]. Journal of Metals, Materials and Minerals,2018,28(1):10-15.
    [16] 曹静. 基于纤维素溶解工艺调控的全纤维素复合材料制备[D]. 成都: 西南交通大学, 2018.

    CAO J. Preparation of all-cellulose composites based on the regulation of cellulose dissolution process[D]. Chengdu: Southwest Jiaotong University, 2018(in Chinese).
    [17] YANG Q L, SAITO T, BERLUND L A, et al. Cellulose nanofibrils efficiently improve mechnical, thermal and oxygen-barrier properties of all-cellulose composites by nano-reinforcement mechanism and nanofibril-induced crystallization[J]. Nanoscale,2015,7(42):17957-17963.
    [18] 巩筱. 纳米纤维素纤丝的改性及其应用研究[D]. 无锡: 江南大学, 2018.

    GONG X. Modification of nanocellulose fibrils and its application[D]. Wuxi: Jiangnan University, 2018(in Chinese).
    [19] 程国阳, 杨黎明, 黄亚峰, 等. 基于DIC方法的车用PP+EPDM-TD10材料动态力学性能研究[J]. 塑料工业, 2017, 45(5):116-119. doi: 10.3969/j.issn.1005-5770.2017.05.028

    CHENG G Y, YANG L M, HUANG Y F, et al. Dynamic mechanical properties of vehicle PP+EPDM-TD10 material based on DIC method[J]. China Plastics Industry,2017,45(5):116-119(in Chinese). doi: 10.3969/j.issn.1005-5770.2017.05.028
    [20] ZHAO J Q, HE X, WANG Y R, et al. Reinforcement of all-cellulose nanocomposite films using nativecellulose nanofibrils[J]. Carbohydrate Polymers,2014,104:143-150.
    [21] 鲍文毅. 纤维素/壳聚糖共混透明膜的制备及其阻隔抗菌性能研究[J]. 高分子学报, 2015(1):49-56.

    BAO W Y. Preparation of cellulose_chitosan co-blended transparent films and its barrier antibacterial properties[J]. Acta Polymerica Sinica,2015(1):49-56(in Chinese).
    [22] YANG Q L, SAITO T, ISOGAI A. Facile fabrication of transparent cellulose films with high water repellency and gas barrier properties[J]. Cellulose,2012,19:1913-1921.
    [23] FERRER A, PAL L, HUBBE M. Nanocellulose in packaging: Advances in barrier layer technologies[J]. Industrial Crops and Products,2017,95:574-582.
    [24] HAN Q Q, GAO X, ZHANG H, et al. Preparation and comparative assessment of regenerated cellulose films from corn(Zea mays) stalk pulp fines in DMAc/LiCl solution[J]. Carbohydrate Polymers,2019,218:315-323.
    [25] 吕芳兵, 张传杰, 王潮杰, 等. 壳聚糖/纤维素生物质发泡复合材料多孔结构的表征[J]. 复合材料学报, 2015, 32(3):632-639.

    LV F B, ZHANG C J, WANG C J, et al. Porous structural characterization of chitosan/cellulose biomass foaming composites[J]. Acta Materiae Compositae Sinica,2015,32(3):632-639(in Chinese).
    [26] ZHU Q, ZHOU X F, MA J X, et al. Preparation and characterization of novel regenerated cellulose films via sol-gel technology[J]. Industrial & Engineering Chemistry Reasearch,2013,52(50):17900-17906.
    [27] 王玮. 基于再生纤维素新型膜的构建_结构和性能[D]. 无锡: 江南大学, 2017.

    WANG W. Construction_structure and performance based on a new film of regenerated cellulose[D]. Wuxi: Jiangnan University, 2017(in Chinese).
    [28] 吴波, 邵发宁, 何文, 等. TEMPO 氧化纤维素纳米纤丝对多壁碳纳米管分散性的影响[J]. 复合材料学报, 2019, 36(9):2212-2219.

    WU B, SHAO F N, HE W, et al. Dispersion effect of TEMPO oxidized cellulose nanofibrils on multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2019,36(9):2212-2219(in Chinese).
    [29] 马红燕. 纤维素_碱尿素水溶液的制备与再生及其流动行为特征研究[D]. 广州: 华南理工大学, 2018.

    MA H Y. Preparation and regeneration of cellulose-alkali urea aqueous solution and its flow behavior characteristics[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
    [30] 徐春江. 基于纤维素纳米晶的生物可降解复合材料的结构与性能[D]. 扬州: 扬州大学, 2018.

    XU C J. Structure and properties of biodegradable composites based on cellulose nanocrystals[D]. Yangzhou: Yangzhou University, 2018(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1323
  • HTML全文浏览量:  418
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-11-12
  • 网络出版日期:  2019-11-21
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回