留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳米SiC/环氧树脂复合材料的界面和非线性电导特性

韩永森 孙健 张昕 郭文敏 李忠华

韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
引用本文: 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
Citation: HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002

微纳米SiC/环氧树脂复合材料的界面和非线性电导特性

doi: 10.13801/j.cnki.fhclxb.20191120.002
基金项目: 国家自然科学基金(51837003);哈尔滨理工大学工程电介质及其应用教育部重点实验室前沿项目预研基金(2018EDAQY03)
详细信息
    通讯作者:

    韩永森,博士,副教授,硕士生导师,研究方向为非线性绝缘材料介电特性及测试 E-mail:hys2006@hrbust.edu.cn

  • 中图分类号: TB332; TM215.92

Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites

  • 摘要: 以微米和纳米SiC为填料,制备了不同填料配比的微纳米SiC/环氧树脂(EP)复合材料。测试了微纳米SiC/EP复合材料的玻璃化转变温度、室温介电谱和直流电导特性。分析了填料与基体之间的界面对玻璃化转变温度、介电谱及直流电导特性的影响。实验结果表明,在微米和纳米SiC填料的共同掺杂下,随着纳米SiC填料含量的增加,微纳米SiC/EP复合材料的玻璃化转变温度先降低后升高。在相同频率下,微纳米SiC/EP复合材料具有更低的相对介电常数和低频损耗峰幅值。与EP相比,微纳米SiC/EP复合材料具备显著的非线性电导特性。与微米SiC/EP复合材料相比,微纳米SiC/EP复合材料具有更高的非线性指数和阈值电场强度。微纳米SiC/EP复合材料的非线性电导特性与SiC颗粒和EP基体之间的界面区密切相关。

     

  • 图  1  微纳米SiC/EP复合材料的玻璃化转变温度

    Figure  1.  Glass transition temperature of micro-nano SiC/EP composites

    图  2  室温下微纳米SiC/EP复合材料相对介电常数、介电常数虚部和损耗角正切与频率的关系

    Figure  2.  Relationships between relative permittivity, imaginary permittivity, loss tangent and frequency of micro-nano SiC/EP composites at room temperature

    图  3  30℃下微纳米SiC/EP复合材料的电流密度与电场强度关系

    Figure  3.  Relationships between current density and electric field of micro-nano SiC/EP composites at 30℃

    图  4  30℃时微纳米SiC/EP复合材料在强电场作用下J/E2与1/E的关系

    Figure  4.  Relationships between J/E2 and 1/E for micro-nano SiC/EP composites under high electric field at 30℃

    图  5  不同电场强度下微纳米SiC/EP复合材料的电导率

    Figure  5.  Conductivities of micro-nano SiC/EP composites under different electric fields (Ec—Switching electric field; ​​​​​​​α—Nonlinear exponent)

    图  6  微米SiC/EP和微纳米SiC/EP复合材料的陷阱密度和0.26 kV∙mm−1下电导率与单位体积内SiC/EP界面总面积的关系

    Figure  6.  Relationships between trap density, conductivity under 0.26 kV∙mm−1and total SiC/EP interface area per volume unit for micro SiC/EP and micro-nano SiC/EP composites

    图  7  微米SiC/EP和微纳米SiC/EP复合材料的非线性指数和阈值电场强度与陷阱密度的关系

    Figure  7.  Relationships between nonlinear exponent, switching electric field and trap densities for micro SiC/EP and micro-nano SiC/EP composites

    表  1  微纳米SiC/环氧树脂(EP)复合材料中微米和纳米SiC的填料含量

    Table  1.   Micro and nano SiC fillers contents of micro-nano SiC/epoxy (EP) composites

    SpecimenEP/gMicro SiC/gNano SiC/g
    P 100 0 0
    M 100 120 0
    MN2 100 120 2
    MN10 100 120 10
    下载: 导出CSV

    表  2  通过式(3)和式(4)获得的微米SiC/EP和微纳米SiC/EP复合材料拟合参数

    Table  2.   Fitting parameters of micro SiC/EP and micro-nano SiC/EP composites obtained by equation (3) and equation (4)

    Specimen numberMMN2MN10
    λ from eq. (3)/nm 624 549 446
    λ from eq. (4)/nm 0.24 0.02 0.08
    β from eq. (4)/(V·m)1/2 0.0011 0.0013 0.0011
    εr from eq. (4) 0.0012 0.0008 0.0012
    Notes: λ—Hopping distance; β—Poole-Frenkel coefficient; εr—Relative permittivity.
    下载: 导出CSV

    表  3  微纳米SiC/EP复合材料的非线性电导参数

    Table  3.   Nonlinear-conduction parameters of micro-nano SiC/EP composites

    SpecimenSwitching electric field Ec/(kV·mm−1)Nonlinear exponent α
    P 0.003
    M 0.08 4.870
    MN2 0.17 6.650
    MN10 0.23 6.390
    下载: 导出CSV

    表  4  微米SiC/EP和微纳米SiC/EP复合材料的填料体积分数(f)、最邻近填料颗粒间距离(Dnns)和单位体积内微纳米SiC/EP界面面积(S)

    Table  4.   Volume percentage (f), nearest neighbor spacing (Dnns) and micro-nano SiC/EP interface area (S) per volume unit of micro SiC/EP and micro-nano SiC/EP composites

    ParameterMMN2MN10
    f (Micro SiC) /vol% 21.2 21.1 20.9
    f (Nano SiC)/vol% 0 0.4 1.7
    Dnns/nm 8 050 407.7 213.4
    S (Micro interface)/(km2∙m−3) 0.06 0.06 0.05
    0.24 1.02
    S (Total interface)/(km2∙m−3) 0.06 0.30 1.07
    Notes: S (Micro interface)—Micro SiC/EP interface area per volume unit; S (Nano interface)—Nano SiC/EP interface area per volume unit; S (Total interface)—Total SiC/EP interface area per volume unit.
    下载: 导出CSV
  • [1] DONNELLY K P, VARLOW B R. Non-linear DC and AC conductivity in electrically insulating composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(4):610-614. doi: 10.1109/TDEI.2003.1219645
    [2] 何金良, 谢竟成, 胡军. 改善不均匀电场的非线性复合材料研究进展[J]. 高电压技术, 2014, 40(3):637-647.

    HE Jinliang, XIE Jingcheng, HU Jun. Progress of nonlinear polymer composites for improving nonuniform electrical fields[J]. High Voltage Engineering,2014,40(3):637-647(in Chinese).
    [3] ESPINO-CORTES F P, JAYARAM S, CHERNEY E A. Stress grading materials for cable terminations under fast rise time pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(2):430-435. doi: 10.1109/TDEI.2006.1624289
    [4] SHARIFI E, JAYARAM S H, CHERNEY E A. Temperature and electric field dependence of stress grading on form-wound motor coils[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(1):264-270. doi: 10.1109/TDEI.2010.5412026
    [5] DONZEL L, GREUTER F, CHRISTEN T. Nonlinear resistive electric field grading Part 2: Materials and applications[J]. IEEE Electrical Insulation Magazine,2011,27(2):18-29.
    [6] 韩宝忠, 郭文敏, 李忠华. 碳化硅/低密度聚乙烯复合材料的直流伏安特性[J]. 复合材料学报, 2008, 25(5):19-24. doi: 10.3321/j.issn:1000-3851.2008.05.004

    HAN Baozhong, GUO Wenmin, LI Zhonghua. DC current-voltage characteristic of silicon carbide/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2008,25(5):19-24(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.004
    [7] ROGTI F, DAVID E. Effect of SiC particles on the electrical conductivity of epoxy composites[J]. Journal of Electronic Materials,2017,46(2):742-746.
    [8] LEBEDEV S M, GEFLE O S, STRIZHKOV A E. Novel polymeric composites with nonlinear current-voltage characteristic[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(1):289-295. doi: 10.1109/TDEI.2013.6451369
    [9] DU B X, YANG Z R, LI Z L, et al. Surface charge behavior of silicone rubber/SiC composites with field-dependent conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(3):1340-1348. doi: 10.1109/TDEI.2017.006137
    [10] 王飞风, 张沛红, 高铭泽. 纳米碳化硅/硅橡胶复合物非线性电导特性研究[J]. 物理学报, 2014, 63(21):217803. doi: 10.7498/aps.63.217803

    WANG Feifeng, ZHANG Peihong, GAO Mingze. Research on the nonlinear conductivity characteristics of nano-SiC/silicone rubber composites[J]. Acta Physica Sinica,2014,63(21):217803(in Chinese). doi: 10.7498/aps.63.217803
    [11] 王猛, 成如如, 高俊国, 等. 微纳米SiO2/低密度聚乙烯复合材料的空间电荷性能[J]. 复合材料学报, 2019, 36(11):2541-2551.

    WANG Meng, CHENG Ruru, GAO Junguo, et al. Space charge properties of micro and nano SiO2/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2541-2551(in Chinese).
    [12] IMAI T, SAWA F, NAKANO T, et al. Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(1):319-326.
    [13] 胡春秀, 赵英男, 高俊国, 等. 蒙脱土/碳化硅微纳米复合体系防电晕漆的研究[J]. 电机与控制学报, 2015, 19(10):45-49.

    HU Chunxiu, ZHAO Yingnan, GAO Junguo, et al. Organic montmorillonite/silicon carbide micro-nano-crystalline composite anti-corona varnish[J]. Electric Machines and Control,2015,19(10):45-49(in Chinese).
    [14] CHRISTEN T, DONZEL L, GREUTER F. Nonlinear resistive electric field grading Part 1: Theory and simulation[J]. IEEE Electrical Insulation Magazine,2011,26(6):47-59.
    [15] ZOU C, FOTHERGILL J C, ROWE S W. The effect of water absorption on the dielectric properties of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):106-117. doi: 10.1109/T-DEI.2008.4446741
    [16] SINGHA S, THOMAS M J. Dielectric properties of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,13(1):12-23.
    [17] HUANG Y, MIN D, LI S, et al. Dielectric relaxation and carrier transport in epoxy resin and its microcomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):3083-3091. doi: 10.1109/TDEI.2017.006163
    [18] TSAGAROPOULOS G, EISENBERG A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers similarities and differences with random ionomers[J]. Macromolecules,1995,28(18):6067-6077. doi: 10.1021/ma00122a011
    [19] LI S, YIN G, BAI S, et al. A new potential barrier model in epoxy resin nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(5):1535-1543. doi: 10.1109/TDEI.2011.6032822
    [20] MARTENSSON E, GAFVERT U, ONNEBY C. Alternate current characteristics of SiC powders[J]. Journal of Applied Physics,2001,90(6):2870-2878. doi: 10.1063/1.1392964
    [21] IYER G, GORUR R S, RICHERT R, et al. Dielectric properties of epoxy based nanocomposites for high voltage insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(3):659-666. doi: 10.1109/TDEI.2011.5931050
    [22] WANG X, NELSON J, SCHADLER L, et al. Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(6):1687-1696.
    [23] HAN Y, LI S, MIN D. Nonlinear conduction and surface potential decay of epoxy/SiC nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):3154-3164. doi: 10.1109/TDEI.2017.006454
    [24] 张辉, 巫松桢, 谢恒堃. 碳化硅防晕层导电机理的研究[J]. 电工技术学报, 1989(3):60-63.

    ZHANG Hui, WU Songzhen, XIE Hengkun. Study on the conduction mechanism of SiC corona-suppression coating[J]. Transactions of China Electrotechnical Society,1989(3):60-63(in Chinese).
    [25] 袁端磊, 闵道敏, 黄印, 等. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响[J]. 物理学报, 2017, 66(9):097701. doi: 10.7498/aps.66.097701

    YUAN Duanlei, MIN Daomin, HUANG Yin, et al. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites[J]. Acta Physica Sinica,2017,66(9):097701(in Chinese). doi: 10.7498/aps.66.097701
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  928
  • HTML全文浏览量:  195
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 录用日期:  2019-10-22
  • 网络出版日期:  2019-11-20
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回