留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系

张聪 夏超凡 袁振 李志华

张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
引用本文: 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001
Citation: ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1754-1762. doi: 10.13801/j.cnki.fhclxb.20191114.001

混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系

doi: 10.13801/j.cnki.fhclxb.20191114.001
基金项目: 国家自然科学基金(51908247);江苏省自然科学基金(BK20170192);硅酸盐建筑材料国家重点实验室开放基金(SYSJJ2017-11)
详细信息
    通讯作者:

    张聪,博士,副教授,硕士生导师,研究方向为高性能纤维水泥基复合材料与结构 E-mail:zhangcong@jiangnan.edu.cn

  • 中图分类号: TB332

Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites

  • 摘要: 钢纤维与聚乙烯醇纤维混杂增强应变硬化水泥基复合材料(SF-PVA/SHCC)的力学性能研究是近年来的热点问题之一,但目前依然欠缺能够完整描述SF-PVA/SHCC拉伸本构关系的理论模型。本文基于混凝土断裂力学和细观力学理论,通过考虑拉伸应力-应变曲线软化段及SF-PVA混杂纤维对SHCC拉伸性能的影响,提出一种新的可适用于SF-PVA/SHCC材料的单轴拉伸本构模型。为了验证模型的有效性,开展了SF-PVA/SHCC单轴拉伸性能试验,分析了纤维种类和掺量对SHCC拉伸强度、拉伸应变及拉伸韧性的影响。通过与试验数据对比发现,本文所提出的拉伸本构模型可以较好地预测SF-PVA/SHCC的拉伸应力-应变关系。

     

  • 图  1  拉伸试验加载装置

    Figure  1.  Loading instrument for tensile test

    图  2  PVA/SHCC、SF/SHCC和SF-PVA/SHCC的拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curves of PVA/SHCC, SF/SHCC and SF-PVA/SHCC

    图  3  PVA/SHCC、SF/SHCC和SF-PVA/SHCC的平均开裂应力、极限应力、极限应变和拉伸韧性

    Figure  3.  Average cracking stress, ultimate stress, ultimate strain and tensile toughness of PVA/SHCC, SF/SHCC and SF-PVA/SHCC

    图  4  PVA/SHCC和SF-PVA/SHCC的双线和三线本构模型

    Figure  4.  Double-line and triple-line constitutive model of PVA/SHCC and SF-PVA/SHCC

    σcu—Ultimate stress; εcu—Ultimate strain; σss—Stable cracking stress; Ec—Elasticity modulus

    图  5  PVA/SHCC、SF/SHCC和SF-PVA/SHCC拉伸本构模型预测结果与试验结果对比

    Figure  5.  Comparison between predicted result and experimental result of tensile constitutive model for PVA/SHCC, SF/SHCC and SF-PVA/SHCC

    IRν—Fiber reinforcing index

    表  1  应变硬化水泥基复合材料(SHCC)中纤维的基本物理参数

    Table  1.   Basic physical parameters of fibers used in strain hardening cementitious composite (SHCC)

    FibersShapeLength/mmDiameter/mmAspect ratioTensile strength/MPaElastic modulus/GPaDensity/(g·cm–3)
    SF Hooked 13 0.2 65 2 000 200–210 7.8
    PVA fiber Straight 12 0.039 307 1 100 42.8 1.3
    Notes: SF—Steel fiber; PVA—Polyvinyl alcohol.
    下载: 导出CSV

    表  2  SHCC中纤维体积分数

    Table  2.   Volume fractions of different fibers in SHCC

    CompositeFiber groupVolume fraction of SF/vol%Volume fraction of PVA fiber/vol%
    PVA/SHCC PVA2 0 2
    SF/SHCC SF2 2 0
    SF-PVA/SHCC-1 SF0.25-PVA1.75 0.25 1.75
    SF-PVA/SHCC-2 SF0.5-PVA1.5 0.5 1.5
    SF-PVA/SHCC-3 SF0.75-PVA1.25 0.75 1.25
    SF-PVA/SHCC-4 SF1-PVA1 1 1
    下载: 导出CSV

    表  3  PVA/SHCC、SF/SHCC和SF-PVA/SHCC的极限应力、极限应变和拉伸韧性理论值与试验值对比

    Table  3.   Comparison between theoretical and experimental results of average ultimate stress, ultimate strain and tensile toughness for PVA/SHCC, SF/SHCC and SF-PVA/SHCC

    GroupUltimate stress/MPaUltimate strain/%Tensile toughness/(N·mm·mm3)
    Theor.Exp.RatioTheor.Exp.RatioTheor.Exp.Ratio
    PVA/SHCC 4.75 4.97 0.956 3.13 3.07 1.021 12.91 13.02 0.992
    SF/SHCC 8.45 8.51 0.993 0.63 0.49 1.286 9.25 9.14 1.012
    SF-PVA/SHCC-1 4.92 4.69 1.049 2.67 2.45 1.090 11.68 11.86 0.985
    SF-PVA/SHCC-2 5.13 4.91 1.045 1.91 1.75 1.091 8.73 9.88 0.884
    SF-PVA/SHCC-3 5.22 4.81 1.085 1.40 1.48 0.946 9.96 9.90 1.006
    SF-PVA/SHCC-4 4.12 3.95 1.043 1.11 1.03 1.078 7.09 6.97 1.017
    Mean 1.028 1.085 0.983
    SD 0.046 0.113 0.050
    COV 0.045 0.104 0.051
    下载: 导出CSV
  • [1] QUDAH S, MAALEJ M. Application of engineered cementitious composites (ECC) in interior beame-column connections for enhanced seismic resistance[J]. Engineering Structures,2014,69:235-245. doi: 10.1016/j.engstruct.2014.03.026
    [2] ZHANG Y X, DENG M K, DONG Z F. Seismic response and shear mechanism of engineered cementitious composite (ECC) short columns[J]. Engineering Structures,2019,192:296-304. doi: 10.1016/j.engstruct.2019.05.019
    [3] COSTA F B, RIGHI D P, GRAEFF A G, et al. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fi-bers[J]. Construction and Building Materials,2019,213:505-513. doi: 10.1016/j.conbuildmat.2019.04.092
    [4] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维增强水泥基复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(1):205-213. doi: 10.13801/j.cnki.fhclxb.20190425.002

    WANG Y Q, SUN L, LIU S G, et al. Experimental study on the creep performance of engineered cementitious composite with polyvinyl alcohol fiber with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(1):205-213(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190425.002
    [5] ABOUHUSSIEN A A, HASSAN A A A, ISMAIL M K, et al. Evaluating the cracking behavior of ECC beam-column connections under cyclic loading by acoustic emission analysis[J]. Construction and Building Materials,2019,215:958-968. doi: 10.1016/j.conbuildmat.2019.04.213
    [6] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥基材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG J F, SUI K. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composite[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese).
    [7] MAALEJ M, QUEK S T, AHMED S F U, et al. Review of potential structural applications of hybrid fiber engineered cementitious composites[J]. Construction and Building Materials,2012,36:216-227.
    [8] AL-GEMEEL A N, ZHUGE Y, YOUSSF O. Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite[J]. Construction and Building Materials,2018,171:858-870. doi: 10.1016/j.conbuildmat.2018.03.172
    [9] SOE K T, ZHANG Y X, ZHANG L C. Material properties of a new hybrid fibre-reinforced engineered cementitious composites[J]. Construction and Building Materials,2013,43:399-407. doi: 10.1016/j.conbuildmat.2013.02.021
    [10] SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fibre engineered cementitious composite panels[J]. Composite Structures,2013,104:320-330. doi: 10.1016/j.compstruct.2013.01.029
    [11] POURFALAH S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J]. Construction and Building Materials,2018,158:921-937. doi: 10.1016/j.conbuildmat.2017.10.077
    [12] FANTILLI A P, MIHASHI H, NISHIWAKI T. Tailoring hybrid strain-hardening cementitious composites[J]. ACI Materials Journal,2014,111(2):211-218.
    [13] BELL J, ZHANG Y X, SOE K, et al. High velocity impact behaviour of hybrid-fiber engineered cementitious composite panels[J]. Advanced Materials Research,2012,450-451:563-567.
    [14] LI Q H, GAO X, XU S L. Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high volume fly ash[J]. Cement and Concrete Composites,2016,72:201-212. doi: 10.1016/j.cemconcomp.2016.05.011
    [15] ZHANG J, WANG Z B, WANG Q, et al. Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite[J]. Journal of Composite Materials,2016,50(30):4291-4305.
    [16] LIU J C, TAN K H. Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers[J]. Construction and Building Materials,2017,135:600-611. doi: 10.1016/j.conbuildmat.2016.12.204
    [17] WANG Z B, ZHANG J, WANG J H, et al. Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio[J]. Journal of Composite Materials,2014,49(18):2169-2186.
    [18] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264.
    [19] LI V C, WU H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites[J]. Applied Mechanics Reviews,1992,45(8):390-398.
    [20] TJIPTOBROTO P, HANSEN W. Tensile strain hardening and multiple cracking in high-performance cement-based composites containing discontinuous fibers[J]. ACI Materials Journal,1993,90(1):16-25.
    [21] KANDA T, LI V C. New micromechanics design theory for pseudostrain hardening cementitious composite[J]. Journal of Engineering Mechanics,1999,125(4):373-381.
    [22] AHMED S F, MAALEJ M, PARAMASIVAM P. Analytical model for tensile strain hardening and multiple cracking behavior of hybrid fiber-engineered cementitious composites[J]. Journal of Materials in Civil Engineering,2007,19(7):527-539. doi: 10.1061/(ASCE)0899-1561(2007)19:7(527)
    [23] KANDA T, LIN Z, LI V C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J]. Journal of Materials in Civil Engineering,2000,12(2):147-156. doi: 10.1061/(ASCE)0899-1561(2000)12:2(147)
    [24] NATHAN G K, PARAMASIVAM P, LEE S L. Tensile behavior of fiber reinforced cement paste[J]. Journal of Ferrocement,1977,7(2):59-79.
    [25] WU H, LI V C. Fiber/cement interface tailoring with plasma treatment[J]. Cement and Concrete Composites,1999,21(3):205-212. doi: 10.1016/S0958-9465(98)00053-5
    [26] SOROUSHIAN P, LEE C. Distribution and orientation of fibers in steel fiber reinforced concrete[J]. ACI Materials Journal,1990,87(5):433-439.
    [27] LIN Z, LI V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces[J]. Journal of the Mechanics and Physics of Solids,1997,45(5):736-787.
    [28] LI V C, STANG H. Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites[J]. Advanced Cement Based Materials,1997,6(1):1-20. doi: 10.1016/S1065-7355(97)90001-8
    [29] WANG Y, LI V C, BACKER S. Modelling of fibre pull-out from a cement matrix[J]. International Journal of Cement Composites and Light-weight Concrete,1988,10(3):143-149. doi: 10.1016/0262-5075(88)90002-4
    [30] SHAO Y, LI Z, SHAH S P. Matrix cracking and interface debonding in fiber-reinforced cement-matrix composites[J]. Advanced Cement Based Materials,1993,1(2):55-56.
    [31] WU H, LI V C. Snubbing and bundling effects on multiple crack spacing of discontinuous random fiber-reinforced brittle matrix composites[J]. Journal of the American Ceramic Society,1992,75(12):3487-3489. doi: 10.1111/j.1151-2916.1992.tb04457.x
    [32] KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology,1995,9(2):19-32.
    [33] WU H C, LI V C. Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites[J]. International Journal of Damage Mechanics,1995,4(1):83-102.
    [34] ALWAN J M. Modeling of the mechanical behavior of fiber reinforced cement based composites under tensile loads[D]. Michigan: University of Michigan, 1994.
    [35] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information of the People’s Republic of China. tandard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [36] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642.

    CAO M L, XU L, ZHANG C. Review on micro-mechanical design, performance and development tendency of engineered cementitious composites[[J]. Journal of the Chinese Ceramic Society,2015,43(5):632-642(in Chinese).
    [37] OU Y, TSAI M, LIU K. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index[J]. Journal of Materials in Civil Engineering,2011,24(2):207-215.
    [38] NING X L, DING Y N, ZHANG F S. Experimental study and prediction model for flexural behaviour of reinforced SCC beam containing steel fibers[J]. Construction and Building Materials,2015,93:644-653. doi: 10.1016/j.conbuildmat.2015.06.024
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  286
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-10-16
  • 网络出版日期:  2019-11-14
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回