留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响

汪蔚 曹建达 郑敏敏 陈婷婷 杨李懿

汪蔚, 曹建达, 郑敏敏, 等. BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响[J]. 复合材料学报, 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005
引用本文: 汪蔚, 曹建达, 郑敏敏, 等. BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响[J]. 复合材料学报, 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005
WANG Wei, CAO Jianda, ZHENG Minmin, et al. Effects of BN surface deposited with nano Sn on thermal conductivity and electrical insulation of BN/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005
Citation: WANG Wei, CAO Jianda, ZHENG Minmin, et al. Effects of BN surface deposited with nano Sn on thermal conductivity and electrical insulation of BN/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005

BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响

doi: 10.13801/j.cnki.fhclxb.20191113.005
基金项目: 浙江省基础公益研究计划项目(LGG19E030006);嘉兴市应用性基础研究专项(2019AD32004)
详细信息
    通讯作者:

    曹建达,硕士,副教授,研究方向为聚合物基复合材料 E-mail:dacao88@163.com

  • 中图分类号: TB332

Effects of BN surface deposited with nano Sn on thermal conductivity and electrical insulation of BN/epoxy composites

  • 摘要: 采用液相还原法,制备了BN表面沉积纳米Sn粒子(BN-Sn NPs)杂化材料,用于环氧树脂(EP)的导热绝缘填料。BN-Sn NPs表面纳米Sn的粒径和熔点分别为10~30 nm 和166.5~195.3℃。BN表面沉积纳米Sn后,粉体Zeta电位及压片的导热系数增加,EP滴在压片表面的接触角降低。在BN-Sn NPs/EP复合材料固化过程中,BN-Sn NPs表面纳米Sn熔融烧结,有利于填料相互桥联在一起,降低接触热阻,并改善界面性能,从而提高BN-Sn NPs/EP复合材料的导热系数。当填料体积含量为30vol%时,BN-Sn NPs/EP复合材料的导热系数达1.61 W(m·K)−1,比未改性BN/EP复合材料的导热系数(1.08 W(m·K)−1)提高了近50%。Monte Carlo法模拟表明,BN和BN-Sn NPs在EP基体中的接触热阻(Rc)分别为6.1×106 K·W−1和3.7×106 K·W−1。与未改性BN/EP复合材料相比,BN-Sn NPs/EP复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有良好电绝缘性能。

     

  • 图  1  BN表面沉积纳米Sn粒子(BN-Sn NPs)制备过程示意图

    Figure  1.  Diagram of preparation process of Sn nano particles deposited on BN surface (BN-Sn NPs)

    图  2  BN和BN-Sn NPs的XRD图谱

    Figure  2.  XRD patterns of BN and BN-Sn NPs

    图  3  BN和BN-Sn NPs的XPS全谱(a)及Sn3d高分辨率窄谱(b)

    Figure  3.  XPS survey spectra(a) and high resolution spectra of Sn3d region(b) of BN and BN-Sn NPs

    图  4  BN(a)和BN-Sn NPs(b) 的SEM图像

    Figure  4.  SEM images of BN (a) and BN-Sn NPs (b)

    图  5  BN和BN-Sn NPs的DSC曲线

    Figure  5.  DSC curves of BN and BN-Sn NPs

    图  6  填料体积分数为20vol%的BN/环氧树脂(EP)(a)和BN-Sn NPs/EP(b)复合材料的SEM图像

    Figure  6.  SEM images of BN/epoxy(EP) resin(a) and BN-Sn NPs/EP(b) composites with fillers volume fraction of 20vol%

    图  7  填料体积含量对BN/EP和BN-Sn NPs/EP复合材料导热系数的影响

    Figure  7.  Effects of filler volume fraction on thermal conductivity of BN/EP and BN-Sn NPs/EP composites

    图  8  BN/EP和BN-Sn NPs/EP复合材料热导率的Foygel模拟结果

    Figure  8.  Foygel simulation results of thermal conductivities of BN/EP and BN-Sn NPs/EP composites

    图  9  BN/EP和BN-Sn NPs/EP复合材料热导率的修正型Foygel公式模拟结果

    Figure  9.  Modified Foygel simulation results of thermal conductivities of BN/EP and BN-Sn NPs/EP composites

    图  10  填料体积含量对BN/EP和BN-Sn NPs/EP复合材料介质损耗、介电强度和体积电阻率的影响

    Figure  10.  Effects of filler volume fraction on dielectric loss, dielectric strength and volume resistivity of BN/EP and BN-Sn NPs/EP composites

    表  1  BN和BN-Sn NPs 的元素组成

    Table  1.   Element compositions of BN and BN-Sn NPs wt%

    SampleBNSn
    BN43.0955.670
    BN-Sn NPs39.9151.557.28
    下载: 导出CSV

    表  2  BN和BN-Sn NPs 粉体及其压片性能对比

    Table  2.   Property comparison of BN and BN-Sn NPs powder and pressed sheet

    SampleBNBN-Sn NPs
    Density of powder/(g·cm−3) 2.27±0.03 2.39±0.03
    Zeta potential of powder/mV −5.9±0.22 1.5±0.13
    Epoxy drop contact angle on pressed sheet/(°) 95.1±3.60 68.7±3.90
    Thermal conductivity of pressed sheet/(W(m·K)−1) 162±2.96 185±3.65
    下载: 导出CSV
  • [1] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocom-posites[J]. Nature,2015,523(7562):576-579. doi: 10.1038/nature14647
    [2] HUANG X Y, ZHI C Y, JIANG P K, et al. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: An ideal dielectric material with high thermal conductivity[J]. Advanced Functional Materials,2013,23(14):1824-1831. doi: 10.1002/adfm.201201824
    [3] NAGAOKA S, JODAI T, KAMEYAMA Y, et al. Cellulose/boron nitride core-shell microbeads providing high thermal conductivity for thermally conductive composite sheets[J]. RSC Advances,2016,6(39):33036-33042. doi: 10.1039/C6RA02950G
    [4] GARIMELLA S V, FLEISCHER A S, MURTHY J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Trabsactions on Components and Packaging Technologies,2008,31(4):801-815. doi: 10.1109/TCAPT.2008.2001197
    [5] GEORGE S, ANJANA P S, SEBASTIAN M T, et al. Dielectric, mechanical, and thermal properties of low-permittivity polymer-ceramic composites for microelectronic applications[J]. International Journal of Applied Ceramic Technology,2010,7(4):461-474.
    [6] CHEN J, HUANG X Y, SUN B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano,2019,13(1):337-345. doi: 10.1021/acsnano.8b06290
    [7] 虞锦鸿. 高导热聚合物基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2012.

    YU Jinhong. Study on preparation and properties of polymer-based composites with high thermal conductivities[D]. Shanghai: Shanghai Jiao Tong University, 2012(in Chinese).
    [8] 周文英, 丁小卫. 导热高分子材料[M]. 北京: 国防工业出版社, 2014.

    ZHOU Wenying, DING Xiaowei. Thermal conductive polymer materials[M]. Beijing: National Defense Industry Press, 2014(in Chinese).
    [9] SONG S H, KATAGI H, TAKEZAWA Y. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J]. Polymer,2012,53(20):4489-4492. doi: 10.1016/j.polymer.2012.07.065
    [10] SHRESTHA R, LI P F, CHATTERJEE B, et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity[J]. Nature Communications,2018,9:1664. doi: https://doi.org/10.1038/s41467-018-03978-3
    [11] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766.

    WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese).
    [12] 党婧, 刘婷婷. SiC颗粒-SiC晶须混杂填料/双马来酰亚胺树脂导热复合材料的制备与性能[J]. 复合材料学报, 2017, 34(2):263-269.

    DANG Jing, LIU Tingting. Fabrication and properties of SiCP-SiCW hybrid fillers/bismaleimide thermal conductivity composites[J]. Acta Materiae Compositae Sinica,2017,34(2):263-269(in Chinese).
    [13] 陈金, 王春锋, 王永亮, 等. 纳米Al2O3分布对Al2O3/PE-EVA复合材料导热性能与力学性能的影响[J]. 复合材料学报, 2015, 32(5):1286-1293.

    CHEN Jin, WANG Chunfeng, WANG Yongliang, et al. Effects of nano Al2O3 distribution on thermal conductivity and mechanical property of Al2O3/PE-EVA composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1286-1293(in Chinese).
    [14] 汪蔚, 曹万荣, 陈婷婷. BN表面改性对BN/环氧树脂复合材料导热性能的影响[J]. 复合材料学报, 2018, 35(2):275-281.

    WANG Wei, CAO Wangrong, CHEN Tingting. Effects of BN surface modification on thermal conductivity of BN/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(2):275-281(in Chinese).
    [15] ISARN I, MASSAGUES L, RAMIS X, et al. New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2017,103:35-47.
    [16] JIN W, ZHANG W, GAO Y, et al. Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites[J]. Applied Surface Science,2013,270(4):561-571.
    [17] CHEE S S, LEE J H. Synthesis of sub-10-nm Sn nano-particles from Sn(Ⅱ) 2-ethylhexanoate by a modified polyol process and preparation of Ag-Sn film by melting of the Sn nanoparticles[J]. Thin Solid Films,2014,562:211-217.
    [18] 中国国家标准化管理委员会. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials: GB/T 1410—2006[S]. Beijing: China Standards Press, 2006(Chinese).
    [19] 中国国家标准化管理委员会. 绝缘材料 电气强度试验方法 第1部分: 工频下试验: GB/T 1408.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Insulating materials: Test methods for electric strength Part 1: Test at power frequencies: GB/T 1408.1—2016[S]. Beijing: China Standards Press, 2016(Chinese).
    [20] 中国国家标准化管理委员会. 测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法: GB/T 1409—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Recommended methods for the determination of the permittivity and dielectric ddissipation fator of electrical insulating materials at power, audio and radio frequencies including meter wavelengths: GB/T 1409—2006[S]. Beijing: China Standards Press, 2006(Chinese).
    [21] BERNARD S, CHASSAGNEUX F, BERTHET M P, et al. Structural and mechanical properties of a high-performance BN fibre[J]. Journal of the European Ceramic Society,2002,22(12):2047-2059. doi: 10.1016/S0955-2219(01)00524-6
    [22] JIANG H, MOON K, DONG H, et al. Size-dependent melting properties of tin nanoparticles[J]. Chemical Physics Letters,2006,429(4):492-496.
    [23] CHEE S S, LEE J H. Reduction synthesis of tin nano-particles using various precursors and melting behavior[J]. Electronic Materials Letters,2012,8(6):587-593. doi: 10.1007/s13391-012-2086-y
    [24] FOYGEL M, MORRIS R D, ANEZ D, et al. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity[J]. Physical Review B,2005,71:104201. doi: 10.1103/PhysRevB.71.104201
    [25] WANG F F, ZENG X L, YAO Y M. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6:19394. doi: 10.1038/srep19394
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  219
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 录用日期:  2019-10-22
  • 网络出版日期:  2019-11-13
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回