留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能

陈嘉磊 刘琦 胡亚一 沈周元 陈秀玲 周先波

陈嘉磊, 刘琦, 胡亚一, 等. 纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能[J]. 复合材料学报, 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001
引用本文: 陈嘉磊, 刘琦, 胡亚一, 等. 纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能[J]. 复合材料学报, 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001
CHEN Jialei, LIU Qi, HU Yayi, et al. Preparation and photocatalytic properties of NH2—Fe3O4@polyethylene glycol@ZnO nanospheres[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001
Citation: CHEN Jialei, LIU Qi, HU Yayi, et al. Preparation and photocatalytic properties of NH2—Fe3O4@polyethylene glycol@ZnO nanospheres[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1639-1648. doi: 10.13801/j.cnki.fhclxb.20191107.001

纳米微球NH2—Fe3O4@聚乙二醇@ZnO的制备及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20191107.001
基金项目: 浙江省大学生科技创新活动计划暨新苗人才计划(2019R401190);浙江省高校实验室工作研究项目(YB201937);浙江大学宁波理工学院校级教学研究与改革重点项目(NITJG-201917)
详细信息
    通讯作者:

    周先波,硕士,高级实验师,研究方向为环境化学  E-mail:zxb@nit.net.cn

  • 中图分类号: TB332

Preparation and photocatalytic properties of NH2—Fe3O4@polyethylene glycol@ZnO nanospheres

  • 摘要: 首先合成氨基功能化Fe3O4(NH2—Fe3O4),并以NH2—Fe3O4为磁核,六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,在表面活性剂聚乙二醇(PEG,PEG-400)辅助下通过水热法制备PEG修饰的ZnO(NH2—Fe3O4@PEG@ZnO)磁性复合材料。利用XRD、SEM、TEM、XPS、紫外-可见-近红外分光光度计、比表面吸附仪(BET)、振动样品磁强计(VSM)等对NH2—Fe3O4@PEG@ZnO复合材料组成、形貌、磁性能等进行表征。并进一步以罗丹明B(RhB)染料为模拟污染物,对NH2−Fe3O4@PEG@ZnO复合材料的光催化降解性能进行研究,采用单因素法探究Fe与Zn的原子比(n(Fe)∶n(Zn))、合成温度、表面活性剂种类及用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解性能的影响。结果表明,n(Fe)∶n(Zn)=1∶15、水热合成温度为180℃制备的NH2—Fe3O4@ZnO复合材料具有良好的光降解性能,0.0500 g NH2—Fe3O4@ZnO复合材料在紫外光照射20 min内对50 mL RhB(1.0×10−5 mol·L−1)溶液降解率为90.36%。而相同条件制备的NH2—Fe3O4@PEG@ZnO复合材料呈微球状,比表面积为11.43 m2·g−1,禁带宽度为2.51 eV,对RhB的光催化降解率可提高至99.36%,循环使用10次后,其对RhB的光催化降解率仍可达96.48%,PEG-400对NH2—Fe3O4@ZnO复合材料的光催化活性具有较大的协同效应。

     

  • 图  1  氨基功能化Fe3O4(NH2—Fe3O4)@聚乙二醇(PEG)@ZnO的制备

    Figure  1.  Synthesis of amino functionalized Fe3O4 (NH2—Fe3O4)@ polyethylene glycol(PEG)@ZnO

    图  2  NH2—Fe3O4@ZnO-1(a)、 NH2—Fe3O4@ZnO-2(b)、 NH2—Fe3O4@ZnO-3(c)、NH2—Fe3O4@PEG@ZnO(d)和循坏后NH2—Fe3O4@PEG@ZnO(e)复合材料的XRD图谱

    Figure  2.  XRD patterns of NH2—Fe3O4@ZnO-1(a), NH2—Fe3O4@ZnO-2(b), NH2—Fe3O4@ZnO-3(c), NH2—Fe3O4@PEG@ZnO(d) and recycled NH2—Fe3O4@PEG@ZnO(e) composites

    图  3  NH2—Fe3O4@ZnO-2(a)、NH2—Fe3O4@PEG@ZnO(b)和循环后NH2—Fe3O4@PEG@ZnO(c)复合材料的SEM图像及NH2—Fe3O4@PEG@ZnO(d)复合材料的TEM图像

    Figure  3.  SEM images of NH2—Fe3O4@ZnO-2(a), NH2—Fe3O4@PEG@ZnO(b) and recycled NH2—Fe3O4@PEG@ZnO(c) composite, TEM image of NH2—Fe3O4@PEG@ZnO(d) composite

    图  4  NH2—Fe3O4@PEG@ZnO复合材料的XPS图谱

    Figure  4.  XPS spectra of NH2—Fe3O4@PEG@ZnO composite

    图  5  ZnO、NH2—Fe3O4@ZnO-2和NH2—Fe3O4@PEG@ZnO复合材料的紫外漫反射光图谱

    Figure  5.  Diffused reflectance spectra of ZnO, NH2—Fe3O4@ZnO-2 and NH2—Fe3O4@PEG@ZnO composites

    图  6  NH2—Fe3O4@PEG@ZnO复合材料的磁滞回线

    Figure  6.  Magnetic hysteresis loop of NH2—Fe3O4@PEG@ZnO composite

    图  7  不同Fe与Zn原子比(n(Fe)∶n(Zn))对NH2—Fe3O4@ZnO复合材料光催化降解罗丹明B(RhB)的影响

    Figure  7.  Effect of different atomic ratios of Fe to Zn(n(Fe)∶n(Zn)) on degradation of Rhodamine B(RhB) by NH2—Fe3O4@ZnO composite

    图  8  不同合成温度对NH2—Fe3O4@ZnO-2复合材料光催化降解RhB的影响

    Figure  8.  Effect of different synthesis temperatures on degradation of RhB by NH2—Fe3O4@ZnO-2 composite

    图  9  表面活性剂种类对NH2—Fe3O4@ZnO-2复合材料光催化降解RhB的影响

    Figure  9.  Effect of different surfactant types on degradation of RhB by NH2—Fe3O4@ZnO-2 composite

    图  10  PEG-400用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解RhB的影响

    Figure  10.  Effect of different PEG-400 dosages on degradation of RhB by NH2—Fe3O4@PEG@ZnO composite

    图  11  NH2—Fe3O4@PEG@ZnO复合材料光催化降解RhB拟一级动力学曲线

    Figure  11.  Pseudo first-order kinetic curves of NH2—Fe3O4@PEG@ZnO composite degrading RhB

    图  12  NH2—Fe3O4@PEG@ZnO复合材料光催化降解RhB的循环使用性能

    Figure  12.  Reusability of NH2—Fe3O4@PEG@ZnO composite for degradation of RhB

    表  1  NH2—Fe3O4@ZnO和NH2—Fe3O4@PEG@ZnO复合材料配比

    Table  1.   Component contents of NH2—Fe3O4@ZnO and NH2—Fe3O4@PEG@ZnO composite

    Samplen(Fe)∶n(Zn)NH2—Fe3O4/gZn(NO3)2·6H2O/gPEG-400/mL
    NH2—Fe3O4@ZnO-11∶100.07732.970
    NH2—Fe3O4@ZnO-21∶150.07734.455
    NH2—Fe3O4@ZnO-31∶200.07735.940
    NH2—Fe3O4@PEG@ZnO1∶150.07734.45515
    Note: n(Fe) : n(Zn)—Atomic ratio of Fe to Zn.
    下载: 导出CSV

    表  2  NH2—Fe3O4@ZnO-2和NH2—Fe3O4@PEG@ZnO复合材料比表面积

    Table  2.   BET surface areas of NH2—Fe3O4@ZnO-2 and NH2—Fe3O4@PEG@ZnO composites

    CatalystBET surface area/(m2·g−1)
    NH2—Fe3O4@ZnO-20.0756
    NH2—Fe3O4@PEG@ZnO11.43
    下载: 导出CSV

    表  3  NH2—Fe3O4@PEG@ZnO复合材料光催化降解RhB拟一级动力学方程及参数

    Table  3.   Pseudo first-order kinetic equations and parameters of NH2—Fe3O4@PEG@ZnO composite degrading RhB

    CompositeKinetic equationsR2K/min−1
    NH2—Fe3O4 Y=0.0049x+0.0073 0.8288 0.0049
    ZnO Y=0.0859x+0.0028 0.9841 0.0859
    NH2—Fe3O4 @ZnO-2 Y=0.1220x+0.1135 0.9115 0.1220
    NH2—Fe3O4@PEG@ZnO Y=0.2016x+0.1160 0.9669 0.2016
    Notes: R2—Correlation coefficient; K—Apparent rate constant.
    下载: 导出CSV
  • [1] CHEN J, CHAO F, MU X, et al. ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation[J]. Inorganic Chemistry Communications,2019,102:25-29. doi: 10.1016/j.inoche.2019.02.008
    [2] REDDY P A K, RDEEY P V L, KWON E, et al. Recent advances in photocatalytic treatment of pollutants in aqueous media[J]. Environment International,2016,91:94-103. doi: 10.1016/j.envint.2016.02.012
    [3] TONG H, OUYANG S, BI Y, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials,2012,24(2):229-251. doi: 10.1002/adma.201102752
    [4] CHEN X, SU T, CHEN Y, et al. D-ribose as a contributor to glycated haemoglobin[J]. EBioMedicine,2017,25:143-153. doi: 10.1016/j.ebiom.2017.10.001
    [5] MISHRA M, CHUN D. α-Fe2O3 as a photocatalytic material: A review[J]. Applied Catalysis A: General,2015,498:126-141. doi: 10.1016/j.apcata.2015.03.023
    [6] CHEN D, HUANG F, REN G, et al. ZnS nano-architectures: Photocatalysis, deactivation and regeneration[J]. Nanoscale,2010,2(10):2062-2064. doi: 10.1039/c0nr00171f
    [7] GHAFURI H, DEHGHANI M, RASHIDIZADEH A, et al. Synthesis and characterization of magnetic nanocomposite Fe3O4@TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation[J]. Optik,2019,179:646-653. doi: 10.1016/j.ijleo.2018.10.180
    [8] SIWIŃSKA-STEFAŃSKA K, KUBIAK A, PIASECKI A, et al. Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties[J]. Applied Surface Science,2019,463:791-801. doi: 10.1016/j.apsusc.2018.08.256
    [9] LIU Y, ZHANG Q, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. doi: 10.1016/j.apsusc.2019.01.137
    [10] ATLA S B, LIN W R, CHIEN T C, et al. Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight[J]. Materials Chemistry and Physics,2018,216:380-386. doi: 10.1016/j.matchemphys.2018.06.020
    [11] WANG J, YANG J, LI X, et al. Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles[J]. Physica E: Low-dimensional Systems and Nanostructures,2016,75:66-71. doi: 10.1016/j.physe.2015.08.040
    [12] 胡亚一, 陈嘉磊, 刘琦, 等. 杂多酸离子液体负载氨基化Fe3O4磁性复合材料的制备及其超声辅助催化脱硫性能[J]. 复合材料学报, 2020, 37(3):650-661.

    HU Y Y, CHEN J L, LIU Q, et al. Preparation of heteropoly acid ionic liquids supported amino-functionalized Fe3O4 magnetic composite and its catalytic property for ultrasound-assisted desulfurization[J]. Acta Materiae Compositae Sinica,2020,37(3):650-661(in Chinese).
    [13] 王燕, 叶思, 吕珊珊, 等. 磁性Fe3O4@离子印迹聚(MMA-HPMA-DVB)复合材料的合成及其对水中Ni(Ⅱ)选择性吸附[J]. 复合材料学报, 2017, 34(12):2846-2855.

    WANG Y, YE S, LV S S, et al. Preparation of ion imprinted Fe3O4@IIP(MMA- HPMA-DVB) magnetic composite and its s-elective adsorption to Ni(Ⅱ)[J]. Acta Materiae Compositae Sinica,2017,34(12):2846-2855(in Chinese).
    [14] LIU K, QIN Y, MUHAMMAD Y, et al. Effect of Fe3O4 content and microwave reaction time on the properties of Fe3O4/ZnO magnetic nanoparticles[J]. Journal of Alloys and Compounds,2019,781:790-799. doi: 10.1016/j.jallcom.2018.12.085
    [15] HABIBI-YANGJEH A, SHEKOFTEH-GOHARI M. Synthesis of magnetically recoverable visible-light-induced photocatalysts by combination of Fe3O4/ZnO with BiOI and polyaniline[J]. Progress in Natural Science: Materials International,2019,29(2):145-155.
    [16] ZHANG L, DONG B, XU L, et al. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection[J]. Sensors and Actuators B: Chemical,2017,252:367-374. doi: 10.1016/j.snb.2017.05.167
    [17] ZENG J, LI Z, PENG H, et al. Core-shell Sm2O3@ZnO nano-heterostructure for the visible light driven photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,560:244-251.
    [18] ZAINURI N Z, HAIROM N H H, SIDIK D A B, et al. Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles[J]. Journal of Water Process Engineering,2018,26:10-16. doi: 10.1016/j.jwpe.2018.08.009
    [19] 龙泽清. Fe掺纳米ZnO及Fe3O4/ZnO的制备及光催化性能研究[D]. 太原: 中北大学, 2016.

    LONG Z Q. A research on the preparation and photocatalytic performance of Fe-doped ZnO and Fe3O4/ZnO[D]. Taiyuan: North University of China, 2016(in Chinese).
    [20] DIKICI T, DEMIRCI S. Influence of thermal oxidation temperature on the microstructure and photoelectrochemical properties of ZnO nanostructures fabricated on the zinc scraps[J]. Journal of Alloys and Compounds,2019,779:752-761. doi: 10.1016/j.jallcom.2018.11.241
    [21] SARANYA A, DEVASENA T, SIVARAM H, et al. Role of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cell[J]. Materials Science in Semiconductor Processing,2019,92:108-115. doi: 10.1016/j.mssp.2018.03.028
    [22] HOLI A M, ZAINAL Z, AYAL A K, et al. Ag2S/ZnO nanorods composite photoelectrode prepared by hydrothermal method based on influence of growth temperature[J]. Optik,2019,184:473-479.
    [23] VIDYASAGAR C C, ARTHOBA NAIK Y. Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles[J]. Arabian of Chemistry,2016,9(4):507-510. doi: 10.1016/j.arabjc.2012.08.002
    [24] 张丽, 阎建辉, 周民杰, 等. 高比表面空心球状ZnO/ZnAI2O4复合光催化剂制备及活性[J]. 无机化学学报, 2012, 28(9):1827-1834.

    ZHANG L, YAN J H, ZHOU M J, et al. Preparation and photocatalytic property of hollow sphere-like ZnO/ZnAI2O4 composite photocatalysts with high specific surface area[J]. Chinese Journal of Inorganic Chemistry,2012,28(9):1827-1834(in Chinese).
    [25] ZHENG W, DING R, YAN X, et al. PEG induced tunable morphology and band gap of ZnO[J]. Materials Letters,2017,201:85-88. doi: 10.1016/j.matlet.2017.04.133
    [26] DEHGHAN S, KAKAVANDI B, KALANT-ARY R R. Heterogeneous sonocatalytic degradation of amoxicillin using ZnO@Fe3O4 magnetic nanocomposite: Influential factors, reusability and mechanisms[J]. Journal of Molecular Liquids,2018,264:98-109. doi: 10.1016/j.molliq.2018.05.020
    [27] LIU Y, LIU G, XU J, et al. Distraction osteogenesis in the dog mandible under 60-Gy irradiation[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology,2012,113(2):183-187. doi: 10.1016/j.tripleo.2011.01.041
    [28] CHEN Y F, TAN L L, LIU J M, et al. Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2017,206:426-433. doi: 10.1016/j.apcatb.2017.01.040
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  365
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 录用日期:  2019-10-17
  • 网络出版日期:  2019-11-07
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回