留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性碳纳米管/环氧树脂复合材料的介电性能

张明艳 王登辉 吴子剑 杨振华 刘居

张明艳, 王登辉, 吴子剑, 等. 改性碳纳米管/环氧树脂复合材料的介电性能[J]. 复合材料学报, 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
引用本文: 张明艳, 王登辉, 吴子剑, 等. 改性碳纳米管/环氧树脂复合材料的介电性能[J]. 复合材料学报, 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
ZHANG Mingyan, WANG Denghui, WU Zijian, et al. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
Citation: ZHANG Mingyan, WANG Denghui, WU Zijian, et al. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001

改性碳纳米管/环氧树脂复合材料的介电性能

doi: 10.13801/j.cnki.fhclxb.20191105.001
基金项目: 工程电介质及应用教育部重点实验室2017年前沿项目预研基金(2018EDAQY05);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018214);哈尔滨市科技创新人 才(2017RAQXJ105)
详细信息
    通讯作者:

    吴子剑,博士,讲师,研究方向为树脂基复合材料 E-mail:zijian.wu@hrbust.edu.cn

  • 中图分类号: TB332;TQ323.5

Dielectric properties of modified carbon nanotube/epoxy composites

  • 摘要: 实验采用混酸法对碳纳米管(CNTs)表面进行改性,制得羧基化碳纳米管(C-CNTs)。采用溶胶-凝胶法制得SiO2包覆的C-CNTs (C-CNTs@SiO2)、TiO2包覆的C-CNTs (C-CNTs@TiO2),采用原位聚合法制得聚苯胺包覆的C-CNTs (C-CNTs@ PANI)。以环氧树脂(EP)为基体材料,通过溶液共混法制备出C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料。研究结果表明:当掺杂相的质量分数均为1 wt%时,四种EP基复合材料的冲击强度相对于未改性的环氧树脂均有不同程度的提高。当掺杂相质量分数为7 wt%时,C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料的介电常数分别是EP的14.1、7.2、2.5、18.8倍。在实验掺杂量下,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的介电损耗几乎没有变化,C-CNTs@PANI/EP的介电损耗略有增加。当掺杂相质量分数为1 wt%时,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的击穿强度相对于EP明显提高。

     

  • 图  1  包覆处理前后碳纳米管(CNTs)的SEM图像

    Figure  1.  SEM images of carbon nanotubes(CNTs) before and after coating treatments

    图  2  包覆处理前后CNTs的TEM图像

    Figure  2.  TEM images of CNTs before and after coating treatments

    图  3  包覆处理前后CNTs的FTIR图谱

    Figure  3.  FTIR spectra of CNTs before and after coating treatments

    图  4  C-CNTs/EP复合材料冲击断面SEM图像

    Figure  4.  SEM images of impact sections of C-CNTs/EP composites

    图  5  C-CNTs/EP复合材料的介电常数随掺杂相质量分数的变化

    Figure  5.  Variations of dielectric constants of C-CNTs/EP composites with mass fractions of doped phases

    图  6  C-CNTs/EP复合材料的介电损耗随掺杂相质量分数的变化

    Figure  6.  Variations of dielectric losses of C-CNTs/EP composites with mass fractions of doped phases

    图  7  C-CNTs/EP复合材料的击穿强度随掺杂相质量分数的变化

    Figure  7.  Variations of breakdown strengths of C-CNTs/EP composites with mass fractions of doped phases

    图  8  C-CNTs/EP复合材料的电导率随掺杂相质量分数的变化

    Figure  8.  Variations of electrical conductivities of C-CNTs/EP composites with mass fractions of doped phases

    表  1  环氧树脂(EP)基复合材料的冲击强度(kJ/m2

    Table  1.   Impact strengths of epoxy resin(EP) matrix composites(kJ/m2)

    MaterialDoped phase mass fraction/wt%
    0.10.20.30.51
    C-CNTs15.816.319.520.621.3
    C-CNTs@SiO221.021.323.924.624.9
    C-CNTs@TiO216.817.418.322.623.2
    CCNTs@PANI20.723.424.126.327.4
    下载: 导出CSV
  • [1] 刘仲良, 李洪峰, 顾继友, 等. 功能化环氧树脂研究概况[J]. 工程塑料应用, 2017, 45(6):126-131. doi: 10.3969/j.issn.1001-3539.2017.06.025

    LIU Zhongliang, Li Hongfeng, GU Jiyou, et al. Overview of functional epoxy resin research[J]. Engineering Plastics Application,2017,45(6):126-131(in Chinese). doi: 10.3969/j.issn.1001-3539.2017.06.025
    [2] WANG Yongqiang, LIU Han, LI Wenpeng, et al. An investigation of surface tracking characteristics and factors influencing epoxy resin pouring insulation for dry-type reactors[J]. Macromolecular Research,2019,27(3):310-320. doi: 10.1007/s13233-019-7038-z
    [3] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):1-6.

    WANG Yan, FAN Zewen, ZHAO Jian, et al. Preparation of carbon nanotube/epoxy electromagnetic shielding composite by 3D printing[J]. Acta Materiae Compositae Sinica,2019,36(1):1-6(in Chinese).
    [4] 李静. 缠绕用耐高温环氧树脂室温固化剂的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LI Jing. Preparation and properties of high temperature epoxy resin room temperature curing agent for winding[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [5] 王英楠, 戴雪岩, 徐天璐, 等. 环氧树脂/硅基-纳米SiO2涂层的制备及防腐蚀性能[J]. 高等学校化学学报, 2018, 39(7):1564-1572. doi: 10.7503/cjcu20170821

    WANG Yingnan, DAI Xueyan, XU Tianlu, et al. Preparation and corrosion resistance of epoxy resin/silicon-based-nano-SiO2 coating[J]. Chemical Journal of Chinese Universities,2018,39(7):1564-1572(in Chinese). doi: 10.7503/cjcu20170821
    [6] 张明艳, 王晨, 吴子剑. 碳纳米管-有机化蒙脱土多维纳米界面构筑及其对环氧树脂的增韧机制[J]. 复合材料学报, 2018, 35(7):1841-1849.

    ZHANG Mingyan, WANG Chen, WU Zijian. Multi-dimensional nano-interface construction of carbon nanotube-organic montmorillonite and its toughening mechanism for epoxy resin[J]. Acta Materiae Compositae Sinica,2018,35(7):1841-1849(in Chinese).
    [7] 周宏, 张玉霞, 范勇, 等. 片状纳米Al2O3/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2014, 31(5):1142-1147.

    ZHOU Hong, ZHANG Yuxia, FAN Yong, et al. Preparation and properties of sheet-like nano-Al2O3/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2014,31(5):1142-1147(in Chinese).
    [8] 韩智云, 邹亮, 辛喆, 等. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20):4692-4703, 4721.

    HAN Zhiyun, ZOU Liang, XIN Zhe, et al. Molecular dynamics simulation of key physical properties of DC GIL insulator epoxy/carbon nanotube composite coatings[J]. Transactions of China Electrotechnical Society,2018,33(20):4692-4703, 4721(in Chinese).
    [9] LU Shen, LI Yinwen, ZHENG Jian, et al. Modified epoxy acrylate resin for photocurable temporary protective coatings[J]. Progress in Organic Coatings,2015,89:17-25.
    [10] 张明艳, 王晨, 吴淑龙, 等. 碳纳米管、蒙脱土共掺杂环氧树脂复合材料介电性能研究[J]. 电工技术学报, 2016, 31(10):151-158. doi: 10.3969/j.issn.1000-6753.2016.10.018

    ZHANG Mingyan, WANG Chen, WU Shulong, et al. Dielectric properties of carbon nanotubes and montmorillonite co-doped epoxy resin composites[J]. Transactions of China Electrotechnical Society,2016,31(10):151-158(in Chinese). doi: 10.3969/j.issn.1000-6753.2016.10.018
    [11] DUAN Z, HE H, LIANG W, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3-modified epoxy resin[J]. Materials,2018,11(6):905. doi: 10.3390/ma11060905
    [12] 黄涛. 环氧树脂/陶瓷杂化颗粒复合材料的制备及其导热性能研究[D]. 长春: 吉林大学, 2017.

    HUANG Tao. Preparation of epoxy resin/ceramic hybrid particle composite and its thermal conductivity[D]. Changchun: Jilin University, 2017(in Chinese).
    [13] 高朋召, 林明清, 林海军, 等. 纳米二氧化硅改性环氧树脂复合材料的性能研究[J]. 湖南大学学报, 2015, 42(6):1-6.

    GAO Pengzhao, LIN Mingqing, LIN Haijun, et al. Study on properties of epoxy resin composites modified by nano-SiO2[J]. Journal of Hu’nan University,2015,42(6):1-6(in Chinese).
    [14] 龚瑾, 李喆, 操卫康, 等. 颗粒尺寸及表面处理对氮化硼/环氧树脂复合材料介电特性的影响[J]. 绝缘材料, 2019, 52(1):10-16.

    GONG Jin, LI Zhe, CAO Weikang, et al. Influence of particle size and surface treatment on dielectric properties of boron nitride/epoxy composites[J]. Insulation Materials,2019,52(1):10-16(in Chinese).
    [15] 寇长珍. 碳纳米管—玻璃纤维共掺杂改性环氧复合材料绝缘及导热性能研究[D]. 西安: 西安理工大学, 2018.

    KOU Changzhen. Study on insulation and thermal conductivity of carbon nanotube-glass fiber co-doped modified epoxy composites[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese).
    [16] 胡芳芳, 聂小安. 碳纳米管增强环氧树脂基复合材料研究进展[J]. 热固性树脂, 2019, 34(1):60-65.

    HU Fangfang, NIE Xiaoan. Research progress of carbon nanotube reinforced epoxy resin matrix composites[J]. Thermosetting Resin,2019,34(1):60-65(in Chinese).
    [17] VAISMAN L, MAROM G, WAGNER H. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers[J]. Advanced Functional Materials,2010,16(3):357-363.
    [18] 吴子剑, 王晨, 张明艳, 等. 环氧树脂纳米复合材料界面及其对电性能影响分析[J]. 电工技术学报, 2018, 33(16):3897-3905.

    WU Zijian, WANG Chen, ZHANG Mingyan, et al. Interface of epoxy resin nanocomposites and its influence on electrical properties[J]. Transactions of China Electrotechnical Society,2018,33(16):3897-3905(in Chinese).
    [19] TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092
    [20] TANAKA T. Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[C]. Annual Conference on Electrical Insulation and Dielectric Phenomena, USA, 2006: 298-301.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1316
  • HTML全文浏览量:  166
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-12
  • 录用日期:  2019-08-30
  • 网络出版日期:  2019-11-06
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回