留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用

巩桂芬 邢韵 李泽 辛浩 曹景飞 罗艳梅

巩桂芬, 邢韵, 李泽, 等. 表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用[J]. 复合材料学报, 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001
引用本文: 巩桂芬, 邢韵, 李泽, 等. 表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用[J]. 复合材料学报, 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001
GONG Guifen, XING Yun, LI Ze, et al. Surface modification of nano crystalline cellulose and application in bismaleimide resin[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001
Citation: GONG Guifen, XING Yun, LI Ze, et al. Surface modification of nano crystalline cellulose and application in bismaleimide resin[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1334-1343. doi: 10.13801/j.cnki.fhclxb.20191104.001

表面修饰纳米晶纤维素及其在双马来酰亚胺树脂中的应用

doi: 10.13801/j.cnki.fhclxb.20191104.001
基金项目: 国家自然科学基金(51372128)
详细信息
    通讯作者:

    巩桂芬,博士,教授,研究方向为纳米纤维素复合材料 E-mail:ggf-hust@163.com

  • 中图分类号: TB332;O636

Surface modification of nano crystalline cellulose and application in bismaleimide resin

  • 摘要: 采用硫酸水解法制备了纳米晶纤维素(NCC),以N,N-羰基二咪唑(CDI)为活化剂,甲代烯丙基醇(MPO)为改性剂,通过化学取代得到含有烯丙基碳酸酯的纳米晶纤维素(PCNCC);以4,4′-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3′-二烯丙基双酚A(BBA)及双酚A双烯丙基醚(BBE)为原料制备了复合材料基体(MBAE)。采用FTIR、XRD、TEM和碘值法等对化学修饰的产物进行分析和表征。结果表明,当PCNCC中烯丙基碳酸酯的取代率为16.4%时,既能保持晶型不变,同时能在BBE中稳定悬浮;PCNCC中烯丙基碳酸酯的取代率过小或过大时均不适宜用作PCNCC/MBAE复合材料的增强相。利用原位聚合法将PCNCC掺杂在MBAE基体中制备PCNCC/MBAE复合材料,考察PCNCC质量分数对PCNCC/MBAE复合材料力学性能、介电性能及热性能的影响规律。结果显示,当PCNCC质量分数为0.2 wt%时,PCNCC/MBAE复合材料的弯曲强度和弯曲模量分别为148.1 MPa和6 GPa,较MBAE基体分别提高了50.5%和82.9%;冲击强度为13.9 kJ/m2,较MBAE基体提高54.8%;玻璃化转变温度Tg由纯MBAE的240.4℃提高到257.8℃。此时PCNCC/MBAE复合材料的介电常数明显提高,而介电损耗达到最低值。为扩展纳米晶纤维素及双马来酰亚胺树脂的应用提供了理论依据。

     

  • 图  1  测试烯丙基碳酸酯纳米晶纤维素(PCNCC)取代率的反应原理

    Figure  1.  Reaction mechanism of testing propenyl carbonate nano crystalline cellulose(PCNCC) replacement rate

    图  2  PCNCC的合成

    Figure  2.  Synthesis of PCNCC

    图  3  PCNCC/MBAE复合材料反应原理

    Figure  3.  Reaction mechanism of PCNCC/MBAE composite

    图  4  NCC和PCNCC的FTIR图谱

    Figure  4.  FTIR spectra of NCC and PCNCC

    图  5  NCC和PCNCC的XRD图谱

    Figure  5.  XRD patterns of NCC and PCNCC

    图  6  NCC和PCNCC的TEM图像

    Figure  6.  TEM images of NCC and PCNCC

    图  7  NCC和PCNCC的分散性

    Figure  7.  Dispersibility of NCC and PCNCC

    图  8  MBAE和PCNCC/MBAE复合材料的FTIR图谱

    Figure  8.  FTIR spectra of MBAE and PCNCC/MBAE composites

    图  9  MBAE和PCNCC/MBAE复合材料的SEM图像

    Figure  9.  SEM images of MBAE and PCNCC/MBAE composites

    图  10  PCNCC/MBAE复合材料力学性能

    Figure  10.  Mechanic properties of PCNCC/MBAE composites

    图  11  PCNCC不同质量分数的PCNCC/MBAE复合材料介电性能

    Figure  11.  Dielectric properties of PCNCC/MBAE composites with diffierent PCNCC mass fractions

    图  12  PCNCC/MBAE复合材料DMA曲线

    Figure  12.  DMA curve of PCNCC/MBAE composites

    表  1  PCNCC/MBAE复合材料样品组分

    Table  1.   Component of PCNCC/MBAE composite samples

    ComponentMass fraction of PCNCC/wt%
    MBAE0
    PCNCC/MBAE0.1−0.5
    Note: MBAE—4,4′-diamino diphenyl methane bismaleimide (MBMI)-3,3′-diallyl bisphenol A (BBA)-bisphenol-A diallyl ether (BBE) matrix.
    下载: 导出CSV

    表  2  PCNCC样品的取代率

    Table  2.   Replacement rates of PCNCC samples

    SamplePCNCC-APCNCC-BPCNCC-CPCNCC-DPCNCC-E
    NCC∶CDI∶MPO mole ratio1∶1.5∶1.51∶1.5∶1.51∶3∶1.51∶3∶1.51∶3∶3
    Temperature/℃2550505065
    Time/h6661212
    Replacement rate/%0.37.516.438.941.3
    Notes:NCC—Nano crystalline cellulose;CDI—N,N-carbonyldiimidazole;MPO—2-Methyl-2-propen-1-ol.
    下载: 导出CSV

    表  3  PCNCC/MBAE复合材料的DMA特征参数

    Table  3.   DMA characteristics of PCNCC/MBAE composites

    SampleTg/℃E′/MPa
    60℃250℃
    MBAE240.42 190224
    0.1 wt%PCNCC/MBAE245.52 330254
    0.2 wt%PCNCC/MBAE257.82 611425
    0.3 wt%PCNCC/MBAE252.72 486346
    0.4 wt%PCNCC/MBAE248.42 424288
    0.5 wt%PCNCC/MBAE246.22 260243
    Notes: Tg—Glass transition temperature; E'—Storage modulus.
    下载: 导出CSV
  • [1] TAKEICHI T, UCHIDA S, INOUE Y, et al. Preparation and properties of polymer alloys consisting of high-molecular-weight benzoxazine and bismaleimide[J]. High Performance Polymers,2014,26(3):265-273. doi: 10.1177/0954008313510958
    [2] CHEN Y, WANG B, LI F, et al. Micro-structure, mechanical properties and dielectric properties of bisphenol a allyl compound-bismaleimide modified by super-critical silica and polyether-sulfone composite[J]. Journal of Electronic Materials,2017,46(7):4656-4661. doi: 10.1007/s11664-017-5468-y
    [3] IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science,2016,69:1-21.
    [4] EICHHORN S J, DUFRESNE A, ARANGUREN M, et al. Review: Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science,2010,45(1):1-33. doi: 10.1007/s10853-009-3874-0
    [5] SHWETA M, PRASHANT S K, ANIL M P. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016-Till date)[J]. Carbohydrate Polymers,2019,207:418-427. doi: 10.1016/j.carbpol.2018.12.004
    [6] WANG D X, YU J, ZHANG J M, et al. Transparent bionano-composites with improved properties from poly (propylene carbonate) (PPC) and cellulose nano- whiskers (CNWs)[J]. Composites Science & Technology,2013,85(85):83-89.
    [7] KUO P Y, YAN N, SAIN M. Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems[J]. European Polymer Journal,2013,49(12):3778-3787. doi: 10.1016/j.eurpolymj.2013.08.022
    [8] RAQUEZ J M, MURENA Y, GOFFIN A L, et al. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach[J]. Composites Science & Technology,2012,72(5):544-549.
    [9] 巩桂芬, 王晓惠, 胡雪娇, 等. 纳米纤维素ARGET ATRP接枝PMMA改性研究[J]. 化工新型材料, 2016(3):118-120.

    GONG G F, WANG X H, HU X J, et al. Study on modification of nanocrystalline cellulose by grafting PMMA using ARGET ATRP method[J]. New Chemical Materials,2016(3):118-120(in Chinese).
    [10] XIA L, XU Y, WANG K, et al. Preparation and properties of modified bismaleimide resins by novel bismaleimide containing 1,3,4-oxadiazole[J]. Polymers for Advanced Technologies,2015,26(3):266-276. doi: 10.1002/pat.3452
    [11] 张思, 张扬, 张宝艳. 双马来酰亚胺树脂增韧改性研究进展[J]. 科技导报, 2016, 34(8):31-34.

    ZHANG S, ZHANG Y, ZHANG B Y. Research on toughening modification of bismaleimide resin[J]. Science & Technology Review,2016,34(8):31-34(in Chinese).
    [12] 张静. 二元胺型苯并噁嗪/双马来酰亚胺共混树脂及其玻璃布增强的层压板[J]. 化工学报, 2015, 66(10):4288-4294. doi: 10.11949/j.issn.0438-1157.20150385

    ZHANG J. Diamine benzoxazine/bismaleimide blended resin and its glass cloth reinforced laminate[J]. CIESC Journal,2015,66(10):4288-4294(in Chinese). doi: 10.11949/j.issn.0438-1157.20150385
    [13] 陈宇飞, 郭红缘, 耿成宝, 等. 聚醚醚酮和烯丙基化合物改性双马来酰亚胺复合材料微观结构及力学性能[J]. 复合材料学报, 2018, 35(11):169-175.

    CHEN Y F, GUO H Y, GENG C B, et al. Microstructure and mechanical properties of bismaleimide composites modified with poly(ether ether ketone) and allyl compounds[J]. Acta Materiae Compositae Sinica,2018,35(11):169-175(in Chinese).
    [14] CHENG T, YAN H, SONG L, et al. Novel phosphorus-containing polyhedral Oligomeric Silses quioxane functionalized graphene oxide: Preparation and its performance on the mechanical and flame-retardant properties of Bismaleimide composite[J]. Journal of Polymer Research,2017,24(10):157. doi: 10.1007/s10965-017-1310-8
    [15] CHEN Z, YAN H, LYU Q, et al. Ternary hybrid nanoparticles of reduced graphene oxide/graphene-like MoS2/zirconia as lubricant additives for bismaleimide composites with improved mechanical and tribological properties[J]. Composites Part A: Applied Science & Manufacturing,2017,101:98-107.
    [16] 许小聪, 刘美华, 卢彦兵, 等. N,N′-羰基二咪唑作为活化剂在高分子合成中的研究进展[J]. 高分子通报, 2007(2):74-80. doi: 10.3969/j.issn.1003-3726.2007.02.010

    XU X C, LIU M H, LU Y B, et al. Research progress of N,N′-carbonyldiimidazole as activator in polymer synthesis[J]. Polymer Bulletin,2007(2):74-80(in Chinese). doi: 10.3969/j.issn.1003-3726.2007.02.010
    [17] 巩桂芬, 胡雪娇, 王晓惠, 等. 聚丙烯酸甲酯接枝改性纳米纤维素[J]. 工程塑料应用, 2015, 43(2):101-103. doi: 10.3969/j.issn.1001-3539.2015.02.024

    GONG G F, HU X J, WANG X H, et al. Grafting of nano-cellulose by polyacrylic acid methyl ester[J]. Engineering Plastics Application,2015,43(2):101-103(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.02.024
    [18] 国家质量监督局. 化学试剂标准滴定溶液的制备: GB/T 601-2016[S]. 北京: 中国标准出版社, 2016.

    General Administration of Quality Supervision. Preparation of chemical reagent standard titration solution: GB/T 601-2016[S]. Beijing: China Standard Press, 2016(in Chinese).
    [19] 国家技术监督局. 硬质塑料简支梁冲击试验方法: GB/T 1043-93[S]. 北京: 中国标准出版社, 1993.

    Nation Bureau of Technical Supervision. Impact test method for rigid plastic simply supported beam: GB/T 1043-93[S]. Beijing: China Standard Press, 1993(in Chinese).
    [20] 国家质量技术监督局. 塑料试样状态调节和试验的标准环境: GB/T 2918-1998[S]. 北京: 中国标准出版社, 1998.

    Nation Bureau of Technical Supervision. Standard environment for state regulation and testing of plastic samples: GB/T 2918-1998[S]. Beijing: China Standard Press, 1998(in Chinese).
    [21] 国家质量技术监督局. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006.

    Nation Bureau of Technical Supervision. Test method for volume resistivity and surface resistivity of solid insulating materials: GB/T 1410—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
    [22] 高可政. 纤维素纳米纤维在储能材料上的基础应用研究[D]. 北京: 北京理工大学, 2014.

    GAO K Z. Basic application of cellulose nanofibers on energy storage materials[D]. Beijing: Beijing Institute of Technology, 2014(in Chinese).
    [23] 陈宇飞, 郭红缘, 李志超, 等. 聚醚砜/双马来酰亚胺-环氧树脂复合材料的微观结构与性能[J]. 复合材料学报, 2017, 34(5):939-944.

    CHEN Y F, GUO H Y, LI Z C, et al. Microstructure and properties of polyether-sulfone with bismaleimide epoxy resin composites[J]. Acta Materiae Compositae Sinica,2017,34(5):939-944(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  997
  • HTML全文浏览量:  139
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-20
  • 录用日期:  2019-09-30
  • 网络出版日期:  2019-11-04
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回