留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能

魏成成 孙晓刚 梁国东 黄雅盼 胡浩 徐宇浩

魏成成, 孙晓刚, 梁国东, 等. Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能[J]. 复合材料学报, 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
引用本文: 魏成成, 孙晓刚, 梁国东, 等. Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能[J]. 复合材料学报, 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
WEI Chengcheng, SUN Xiaogang, LIANG Guodong, et al. Preparation and electrochemical performance of Si@cyclized-polyacrylonitrile/ multi-walled carbon nanotubes anode composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002
Citation: WEI Chengcheng, SUN Xiaogang, LIANG Guodong, et al. Preparation and electrochemical performance of Si@cyclized-polyacrylonitrile/ multi-walled carbon nanotubes anode composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1450-1457. doi: 10.13801/j.cnki.fhclxb.20191031.002

Si@环化聚丙烯腈/多壁碳纳米管负极复合材料的制备及电化学性能

doi: 10.13801/j.cnki.fhclxb.20191031.002
基金项目: 江西省科技厅资助项目(20142BBE50071);江西省教育厅资助项目(KJLD13006)
详细信息
    通讯作者:

    孙晓刚,教授,研究方向为碳纳米管和锂离子电池 E-mail:xiaogangsun@163.com

  • 中图分类号: TB383;TM911

Preparation and electrochemical performance of Si@cyclized-polyacrylonitrile/ multi-walled carbon nanotubes anode composites

  • 摘要: 通过简单高能球磨和高温热解法制备了锂离子电池Si/C电极复合材料,聚丙烯腈(PAN)包覆的纳米颗粒(Si@PAN)与多壁碳纳米管(MWCNTs)混合,制得Si@环化PAN/MWCNTs(Si@c-PAN/MWCNTs)复合材料作为锂离子电池的负极材料。包覆在纳米Si外层的高温热解后的PAN能够有效缓冲Si在充放电过程中巨大的体积变化产生的应力,同时MWCNTs作为Si@c-PAN的基体阻止Si@c-PAN颗粒的团聚,也提高了Si@c-PAN/MWCNTs复合材料电极的导电性能。电化学测试结果表明,Si@c-PAN/MWCNTs复合材料电极在电流密度为0.2 A/g时,其首次放电比容量达到2 098 mA•h/g,库伦效率达到86%;循环50次后Si@c-PAN/MWCNTs复合材料电极的可逆比容量仍能够达到1 278 mA•h/g,在2 A/g放电时其比容量为600 mA•h/g,仍保持良好的循环稳定性。

     

  • 图  1  Si@环化聚丙烯腈(c-PAN)/多壁碳纳米管(MWCNTs)复合材料的制备流程

    Figure  1.  Preparation process of Si@cyclized-polyacrylonitrile(c-PAN)/multi-walled carbon nanotubes(MWCNTs) composites

    图  2  Si@c-PAN/MWCNTs (a)、Si@c-PAN (b)、Si/MWCNTs复合材料(c)、PAN(d)和纳米Si(e)的SEM图像

    Figure  2.  SEM images of Si@c-PAN/MWCNTs(a), Si@c-PAN(b), Si/MWCNTs(c), PAN(d) and nano Si(e)

    图  3  Si@c-PAN/MWCNTs复合材料的TEM图像

    Figure  3.  TEM images of Si@c-PAN/MWCNTs composites

    图  4  Si@c-PAN/MWCNTs、Si@c-PAN、Si/MWCNTs复合材料和Si的XRD图谱

    Figure  4.  XRD patterns of Si@c-PAN/MWCNTs, Si@c-PAN , Si/MWCNTs composites and Si

    图  5  三种Li-Si复合材料电池电化学性能

    Figure  5.  Electrochemical performance of three Li-Si composite batteries

    图  6  Si@c-PAN/MWCNTS、Si@c-PAN和Si/MWCNTS复合材料的倍率性能(a)和循环性能对比(b)

    Figure  6.  Ratio performance (a) and cycle performance (b) comparison of Si@c-PAN/MWCNTS, Si@c-PAN and Si/MWCNTS composites

    图  7  三种Li-Si复合材料电池放电前(a)和放电后(b)的交流阻抗(EIS)曲线

    Figure  7.  Electrochemical impedance spectroscopy(EIS) curves of three Li-Si composite batteries before (a) and after discharge (b)

    图  8  Si@c-PAN/MWCNTs(a)、 Si@c-PAN(b)和Si/MWCNTs复合材料电池(c)循环伏安曲线

    Figure  8.  CV curves of Si@c-PAN/MWCNTs (a), Si@c-PAN (b) and Si/MWCNTs composite batteries (c)

    图  9  Si@c-PAN/MWCNTs(a)、Si@c-PAN(b)和Si/MWCNTs复合材料电池(c)充放电50次后的SEM图像

    Figure  9.  SEM images of Si@c-PAN/ MWCNTs (a), Si@c-PAN (b) and Si/MWCNTs composite batteries (c) after 50 cycles

  • [1] SCHMUCH R, WAGNER R, GERHARD H, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy,2018,3(4):267-278. doi: 10.1038/s41560-018-0107-2
    [2] CASIMIR A, ZHANG H, OGOKE O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy,2016,27:359-376. doi: 10.1016/j.nanoen.2016.07.023
    [3] LIANG B, LIU Y, XU Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Journal of Power Sources,2014,267:469-490. doi: 10.1016/j.jpowsour.2014.05.096
    [4] YIN Y X, WAN L J, GUO Y G. Silicon-based nanomaterials for lithium-ion batteries[J]. Chinese Science Bulletin,2012,57(32):4104-4110. doi: 10.1007/s11434-012-5017-2
    [5] ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta,2013,87(1):663-668.
    [6] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today,2012,7(5):414-429. doi: 10.1016/j.nantod.2012.08.004
    [7] LIU L, LYU J, LI T, et al. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale,2015,8(2):701-722.
    [8] LIU L, PENG J, WANG G, et al. Synthesis of mesoporous TiO2@C@MnO2 multi-shelled hollow nanospheres with high rate capability and stability for lithium-ion batteries[J]. RSC Advances,2016,6(69):65243-65251. doi: 10.1039/C6RA14156K
    [9] REHMAN S, GUO S, HOU Y. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery[J]. Advanced Materials,2016,28(16):3167-3172. doi: 10.1002/adma.201506111
    [10] 梁剑文. 硅纳米负极材料的化学法制备及其锂离子电池性能[D]. 合肥: 中国科学技术大学, 2015.

    LIANG J W. Chemical synthesis of nano-silicon materials and their lithium batteries property[D]. Hefei: University of Science and Technology of China, 2015.
    [11] LIANG J, LI X, ZHU Y, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries[J]. Nano Research,2015,8(5):1497-1504. doi: 10.1007/s12274-014-0633-6
    [12] 阮威, 王英, 唐仁衡, 等. 沥青包覆Si/G/C复合材料的制备与性能研究[J]. 电源技术, 2017, 41(4):533-536. doi: 10.3969/j.issn.1002-087X.2017.04.008

    WEI R, YING W, TANG R H, et al. Study on preparation and property of pitch-coated silicon/graphite/carbon compo-site[J]. Chinese Journal of Power Sources,2017,41(4):533-536(in Chinese). doi: 10.3969/j.issn.1002-087X.2017.04.008
    [13] JU Y J, INYEONG K, KYUNG W Y, et al. Highly conducting fibrous carbon-coated silicon alloy anode for lithium ion batteries[J]. Applied Surface Science,2018,454:277-283. doi: 10.1016/j.apsusc.2018.05.165
    [14] SHI W, CHEN J, YANG Q, et al. Novel three-dimensional carbon nanotube-graphene architecture with abundant chambers and its application in lithium-silicon batteries[J]. Journal of Physical Chemistry C,2016,120(25):13807-13814. doi: 10.1021/acs.jpcc.6b03864
    [15] WON S K, JONGHYUN C, SEONG H H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery[J]. Nano Research,2016,9(7):2174-2181. doi: 10.1007/s12274-016-1106-x
    [16] 王海帆, 魏伟, 秦磊, 等. 碳纳米管的微观结构调节对锂空气电池电化学行为的影响[J]. 新型炭材料, 2016, 31(3):307-314.

    WANG H F, WEI W, QIN L, et al. Influence of the KOH activation of carbon nanotubes on their electrochemical behavior in lithium-air batteries[J]. New Carbon Materials,2016,31(3):307-314(in Chinese).
    [17] LI D, LI X, PAN Y, et al. Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline[J]. Electrochimica Acta,2015,182:264-271. doi: 10.1016/j.electacta.2015.09.096
    [18] 赫文秀, 于慧颖, 张永强, 等. Ni(OH)2-碳纳米管-还原氧化石墨烯复合材料的制备及电化学性能[J]. 复合材料学报, 2018, 35(7):1921-1929.

    HAO W X, YU H Y, ZHANG Y Q, et al. Preparation and electrochemical properties of Ni(OH)2-carbon nanotubes-reduced graphene oxide composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1921-1929(in Chinese).
    [19] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters,2012,12(6):3315-3321. doi: 10.1021/nl3014814
    [20] CETINKAYA T, UYSAL M, GULER M O, et al. Improvement cycleability of core-shell silicon/copper composite electrodes for Li-ion batteries by using electroless depo-sition of copper on silicon powders[J]. Powder Technology,2014,253(2):63-69.
    [21] JIN H U, HONG L I, HUANG X, et al. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries[J]. Solid State Ionics,2007,178(3):265-271.
    [22] HANG T, MUKOYAMA D, NARA H, et al. Electrochemical impedance spectroscopy analysis for lithium-ion battery using Li4Ti5O12 anode[J]. Journal of Power Sources,2013,222(2):442-447.
    [23] 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6):1044-1057.

    ZHUANG Q C, XU S D, QIU X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries[J]. Progress in Chemistry,2010,22(6):1044-1057(in Chinese).
    [24] DONG X, LU C, WANG L, et al. Polyacrylonitrile-based turbostratic graphite-like carbon wrapped silicon nanoparticles: A new-type anode material for lithium ion electrode[J]. RSC Advances,2016(6):12737-12743.
    [25] ZHU B, JIN Y, TAN Y, et al. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion electrode anode[J]. Nano Letters,2015,15(9):5750-5754. doi: 10.1021/acs.nanolett.5b01698
    [26] HAN W, XIAO J T, WANG C, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy,2015,11:490-499. doi: 10.1016/j.nanoen.2014.11.031
  • 加载中
图(9)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  180
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-20
  • 录用日期:  2019-10-30
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回