留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能

钱晓明 魏楚 钱幺 刘永胜 王立晶

钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
引用本文: 钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
QIAN Xiaoming, WEI Chu, QIAN Yao, et al. Preparation and properties of micro-nano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber multilayer composite filters[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001
Citation: QIAN Xiaoming, WEI Chu, QIAN Yao, et al. Preparation and properties of micro-nano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber multilayer composite filters[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001

空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20191031.001
基金项目: 国家自然科学基金(U1607117);天津市应用基础与前沿技术计划项目(16JCZDJC36400);天津市科技计划项目(17PTSYJC00150)
详细信息
    通讯作者:

    钱晓明,博士,教授,博士生导师,研究方向为新型非织造材料制备技术、服装功能与舒适性 E-mail:qxm@tiangong.edu.cn

  • 中图分类号: TB332

Preparation and properties of micro-nano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber multilayer composite filters

  • 摘要: 采用静电纺丝技术将聚丙烯腈(PAN)纳米纤维收集在皮芯型聚乙烯-聚丙烯(PE-PP)双组分微米纤维网上,制备PAN/PE-PP单层复合纤维网,再将多个单层复合纤维网层层堆叠,经热黏合加固,制备PAN/PE-PP多层复合空气过滤材料,研究了PAN/PE-PP复合纤维网的层数和纺丝时间对其孔径及过滤性能的影响。结果表明:多层复合的方式可得到与单层复合材料相似的孔径参数,但两种材料的孔道结构不同。在总面密度和总纺丝时间一定时,当PAN/PE-PP复合纤维网的层数大于10层时,PAN/PE-PP多层复合过滤材料的过滤效率和品质因子QF均明显大于PAN/PE-PP单层复合过滤材料,阻力略微增大;其中,相较PAN/PE-PP单层复合过滤材料,20层PAN/PE-PP复合过滤材料对≥0.3 μm颗粒的过滤效率提高了33%,阻力增加了5 Pa,QF值提高了30%。当总面密度和层数一定时,延长静电纺丝时间≥210 min,20层PAN/PE-PP复合过滤材料对颗粒的过滤效率可提高至90%以上,但阻力也急剧增大,因此静电纺丝时间为210 min的PAN/PE-PP多层复合材料的过滤性能最佳。因此,与相同面密度的PAN/PE-PP单层复合过滤材料相比,PAN/PE-PP多层复合过滤材料的过滤性能明显提高;微纳米纤维多层复合法是制备高效低阻复合空气过滤材料的有效方法。

     

  • 图  1  PAN/PE-PP多层复合过滤材料表面的SEM图像

    Figure  1.  SEM images of surface morphologies of PAN/PE-PP multilayer composite filters

    图  2  PAN/PE-PP纤维多层复合过滤材料截面的SEM图像

    Figure  2.  SEM images of cross section morphologies of PAN/PE-PP multilayer composite filters

    图  3  PAN/PE-PP多层复合过滤材料的FTIR图谱

    Figure  3.  FTIR spectra of PAN/PE-PP multilayer composite filters

    图  4  PAN/PE-PP多层复合过滤材料的过滤效率

    Figure  4.  Filtration efficiencies of PAN/PE-PP multilayer composite filters

    图  5  不同层数和不同纺丝时间的PAN/PE-PP多层复合过滤材料的过滤阻力和品质因子

    Figure  5.  Fltration resistance and quality factors of PAN/PE-PP multilayer composite filters with different layers and different electrospinning time

    表  1  微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维(PAN/PE-PP)多层复合过滤材料的设计参数

    Table  1.   Parameters of micro-nano polyacrylonitrile/sheath-core polyethylene-polypropylene bicomponent fiber (PAN/PE-PP) multilayer composite filters

    Parameter1L-120T5L-120T10L-120T15L-120T20L-120T20L-150T20L-180T20L-210T20L-240T20L-270T
    Areal density of each micro-fiber web/(g·m−2) 150 30 15 10 7.5 7.5 7.5 7.5 7.5 7.5
    Number of layers of composite web/layer 1 5 10 15 20 20 20 20 20 20
    Electrospinning time of each layer/min 120 24 12 8 6 7.5 9 10.5 12 13.5
    Total electrospinning time/min 120 120 120 120 120 150 180 210 240 270
    Notes: L—Number of layers of composite webs; T—Total electrospinning time.
    下载: 导出CSV

    表  2  PAN/PE-PP多层复合过滤材料的基本性能

    Table  2.   Basic properties of PAN/PE-PP multilayer composite filters

    Property1L-120T5L-120T10L-120T15L-120T20L-120T20L-150T20L-180T20L-210T20L-240T20L-270T
    Average thickness/mm 2.706 2.468 2.526 2.494 2.728 2.540 2.516 2.758 2.612 2.711
    Actual areal density/(g·m−2) 152.43 147.15 156.84 146.71 154.2 151.11 145.83 148.03 150.62 151.58
    Volume density/(g·m−3) 56 330 59 623 62 090 58 825 56 525 59 492 57 961 53 673 57 665 55 913
    Air permeability/(mm·s−1) 514.98 827.68 687.88 525.08 446.94 391.76 289.86 247.86 121.45 65.26
    下载: 导出CSV

    表  3  PAN/PE-PP多层复合过滤材料的孔径

    Table  3.   Pore sizes of PAN/PE-PP multilayer composite filters

    SampleAverage pore size/μmMaximum pore size/μmMinimum pore size/μmTwo maximum distributed pore size range/μm
    1L-120T 16.87 28.23 1.34 0–15 (55.23%), 15–30 (39.16%)
    5L-120T 22.45 53.15 1.91 15–30(61.92%), 0–15 (22.53%)
    10L-120T 21.59 53.23 1.76 15–30(65.23%), 0–15(26.49%)
    15L-120T 19.07 46.84 1.74 15–30(50.96%), 0–15(42.90%)
    20L-120T 17.55 37.38 1.42 0–15(50.41%), 15–30(41.78%)
    20L-150T 14.98 31.69 1.38 0–15(59.13%), 15–30(35.62%)
    20L-180T 9.37 27.93 1.12 0–15(80.65%), 15–30(16.03%)
    20L-210T 7.53 25.35 0.97 0–15(88.99%), 15–30(6.49%)
    20L-240T 7.05 22.16 0.90 0–15(89.84%), 15–30(6.23%)
    20L-270T 6.39 21.71 0.78 0–15(92.08%), 15–30(4.93%)
    下载: 导出CSV

    表  4  PAN/PE-PP多层复合过滤材料的分级过滤效率

    Table  4.   Graded filtration efficiencies of PAN/PE-PP multilayer composite filters

    Diameter1L-120T5L-120T10L-120T15L-120T20L-120T20L-150T20L-180T20L-210T20L-240T20L-270T
    ≥0.3 μm 38.53 31.38 37.14 43.78 57.80 57.86 82.06 88.03 92.52 96.23
    ≥1 μm 74.65 63.97 72.04 83.31 90.81 92.84 98.77 99.46 99.99 100.00
    ≥2.5 μm 89.31 87.71 93.48 95.40 99.53 99.84 100.00 100.00 100.00 100.00
    ≥4 μm 92.53 92.82 98.38 99.95 100.00 100.00 100.00 100.00 100.00 100.00
    下载: 导出CSV
  • [1] 张久政, 杜功优, 李雪璞, 等. 多层过滤材料透过性能的研究[J]. 过滤与分离, 2013, 23(2):35-37. doi: 10.3969/j.issn.1005-8265.2013.02.009

    ZHANG Jiuzheng, DU Gongyou, LI Xuepu, et al. Research on the permeability of multilayer filter materal[J]. Journal of Filtration & Separation,2013,23(2):35-37(in Chinese). doi: 10.3969/j.issn.1005-8265.2013.02.009
    [2] 娄辉清, 王利娜, 闫新, 等. 复合滤材的结构设计及其对PM2.5的防护性能[J]. 丝绸, 2018, 55(7):28-34. doi: 10.3969/j.issn.1001-7003.2018.07.005

    LOU Huiqing, WANG Lina, YAN Xin, et al. Structural design of composite filter material and its protective performance to PM2.5[J]. Silk,2018,55(7):28-34(in Chinese). doi: 10.3969/j.issn.1001-7003.2018.07.005
    [3] 范静静, 周莉, 胡洁, 等. 复合结构防护口罩材料的制备及性能研究[J]. 材料导报, 2015, 29(4):50-54. doi: 10.11896/j.issn.1005-023X.2015.04.013

    FAN Jingjing, ZHOU Li, HU Jie, et al. Preparation and property research of protective mask materials in composite structure[J]. Materials Review,2015,29(4):50-54(in Chinese). doi: 10.11896/j.issn.1005-023X.2015.04.013
    [4] PRZEKOP R, GRADOÑ L. Deposition and filtration of nanoparticles in the composites of nano- and microsized fibers[J]. Aerosol Science and Technology,2008,42(6):483-493. doi: 10.1080/02786820802187077
    [5] 常怀云, 熊杰. 静电纺纳米纤维用于过滤介质的研究现状[J]. 材料导报, 2009, 23(14):90-92. doi: 10.3321/j.issn:1005-023X.2009.14.026

    CHANG Huaiyun, XIONG Jie. Current status of electrospun nanofiber used as filtration media[J]. Materials Review,2009,23(14):90-92(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.14.026
    [6] ZHANG L F, LUO J, MENKHAUS T J, et al. Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers[J]. Journal of Membrane Science,2011,369(1-2):499-505. doi: 10.1016/j.memsci.2010.12.032
    [7] 曹延娟, 辛斌杰, 张杰, 等. 天然纤维素/聚丙烯腈抗菌纳米纤维的制备与表征[J]. 复合材料学报, 2015, 32(4):1042-1052.

    CAO Yanjuan, XIN Binjie, ZHANG Jie, et al. Preparation and characterization of natural cellulose/polyacrylonitrile antibacterial nanofibers[J]. Acta Materiae Compositae Sinica,2015,32(4):1042-1052(in Chinese).
    [8] ZHANG S C, TANG N, CAO L T, et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles[J]. ACS Applied Materials & Interfaces,2016,8(42):29062-29072.
    [9] 王利娜, 娄辉清, 辛长征, 等. 空气过滤用电纺聚偏氟乙烯-聚丙烯腈/熔喷聚丙烯无纺布复合材料的制备及过滤性能[J]. 复合材料学报, 2019, 36(2):277-282.

    WANG Li’na, LOU Huiqing, XIN Changzheng, et al. Preparation and filtration properties of electrospun poly(vinyl-idene fluoride)-polyacrylonitrile/melt-blow polypropylene nonwoven composite filtration materials[J]. Acta Materiae Compositae Sinica,2019,36(2):277-282(in Chinese).
    [10] 皇甫晨晨. 静电纺聚丙烯腈复合滤料的制备与性能[J]. 化工新型材料, 2016, 44(12):226-228.

    HUANGFU Chenchen. Preparation and property of electrospun polyacrylonitrile composite filter[J]. New Chemical Materials,2016,44(12):226-228(in Chinese).
    [11] AMINI G, GHAREHAGHAJI A A. Improving adhesion of electrospun nanofiber mats to supporting substrate by using adhesive bonding[J]. International Journal of Adhesion and Adhesives,2018,86(11):40-44.
    [12] VINH N D, KIM H M. Electrospinning Fabrication and performance evaluation of polyacrylonitrile nanofiber for air filter applications[J]. Applied Sciences,2016,6(9):6090235.
    [13] 陈燕. 汽车空调用热轧空气过滤非织造材料硬挺整理工艺及性能研究[D]. 上海: 东华大学, 2013.

    CHEN Yan. Research on stiffness finishing on thermal bonded nonwovens for cabin air filter[D]. Shanghai: Donghua University, 2013 (in Chinese).
    [14] NICOSIA A, KEPPLER T, MULLER F A, et al. Cellulose acetate nanofiber electrospun on nylon substrate as novel composite matrix for efficient, heat-resistant, air filters[J]. Chemical Engineering Science,2016,153:284-294. doi: 10.1016/j.ces.2016.07.017
    [15] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science,2010,41(2):230-236. doi: 10.1016/j.jaerosci.2009.10.001
    [16] HUNG C H, LEUNG W W F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transi-tional flow regime[J]. Separation and Purification Technology,2011,79(1):34-42. doi: 10.1016/j.seppur.2011.03.008
    [17] 张静峰. 复合双层热风非织造布的设计与性能[J]. 产业用纺织品, 2014, 32(7):5-9. doi: 10.3969/j.issn.1004-7093.2014.07.002

    ZHANG Jingfeng. The design and study on double-layer air through nonwovens[J]. Technical Textiles,2014,32(7):5-9(in Chinese). doi: 10.3969/j.issn.1004-7093.2014.07.002
    [18] 中国国家标准化管理委员会. 纺织品非织造布试验方法第2部分: 厚度的测定: GB/T 24218.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Textiles-test methods for nonwovens Part 2: Determination of thickness: GB/T 24218.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [19] 中国国家标准化管理委员会. 纺织品非织造布试验方法第1部分: 单位面积质量的测定: GB/T 24218.1—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Textiles test methods for nonwovens Part 1: Determination of mass per unit area: GB/T 24218.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [20] 中国国家标准化管理委员会. 纺织品非织造布试验方法第15部分: 透气性的测定: GB/T 24218.15—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of the People’s Republic of China. Textiles-test methods for nonwovens Part15: Determination of air permeability: GB/T 24218.15—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [21] 钱晓明, 王一帆. 新型纳微纤维复合滤料的制备及性能[J]. 天津工业大学学报, 2018, 37(1):13-18.

    QIAN Xiaoming, WANG Yifan. Preparation and performance of a novel composite filter composed of micrometer as well as nanometer sized fibers[J]. Journal of Tianjin Polytechnic University,2018,37(1):13-18(in Chinese).
    [22] 张旭, 王露莹, 李素英, 等. 涤纶湿法成网过滤材料的开发与性能研究[J]. 合成纤维工业, 2017, 40(5):12-15, 21. doi: 10.3969/j.issn.1001-0041.2017.05.004

    ZHANG Xu, WANG Luying, LI Suying, et al. Development and performance of wet-laid polyester liquid filtration material[J]. China Synthetic Fiber Industry,2017,40(5):12-15, 21(in Chinese). doi: 10.3969/j.issn.1001-0041.2017.05.004
    [23] 张克勤. 红外光谱法对聚丙烯腈共聚物的结构表征[J]. 光谱实验室, 2012, 29(6):3297-3299. doi: 10.3969/j.issn.1004-8138.2012.06.006

    ZHANG Keqin. Structure characteristic of polyacrylonitrile copolymer by IR spectrometry[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(6):3297-3299(in Chinese). doi: 10.3969/j.issn.1004-8138.2012.06.006
    [24] 张旺玺, 孙长红, 王艳芝, 等. 静电纺丝制备金刚石/聚丙烯腈杂化复合纤维[J]. 复合材料学报, 2018, 35(11):2919-2926.

    ZHANG Wangxi, SUN Changhong, WANG Yanzhi, et al. Preparation and thermal properties of the diamond/polyacrylonitrile composite fibers generated from electrospinning[J]. Acta Materiae Compositae Sinica,2018,35(11):2919-2926(in Chinese).
    [25] 刘雷艮, 沈忠安, 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(7):12-16.

    LIU Leigen, SHEN Zhongan, HONG Jianhan. Preparation and properties of electrospun composite material for high-efficiency ash filtration[J]. Journal of Textile Research,2015,36(7):12-16(in Chinese).
    [26] 姚春梅, 黄锋林, 魏取福, 等. 静电纺聚乳酸纳米纤维复合滤料的过滤性能研究[J]. 化工新型材料, 2012, 40(4):122-124. doi: 10.3969/j.issn.1006-3536.2012.04.041

    YAO Chunmei, HUANG Fenglin, WEI Qufu, et al. Filtration properties of electrospun PLA nano-fiber composite membrane[J]. New Chemical Materials,2012,40(4):122-124(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.04.041
    [27] 于宾, 赵晓明, 漆东岳. 腈纶预氧化丝/芳纶针刺滤材的性能[J]. 纺织学报, 2018, 39(3):61-66.

    YU Bin, ZHAO Xiaoming, QI Dongyue. Properties of pre-oxidized polyacrylonitrile/aramid fiber needled filters[J]. Journal of Textile Research,2018,39(3):61-66(in Chinese).
    [28] WANG C, OTANI Y. Removal of nanoparticles from gas streams by fibrous filters: A review[J]. Industrial & Engineering Chemistry Research,2012,52(1):5-17.
    [29] CHOI H, KUMITA M, HAYASHI S, et al. Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance[J]. Aerosol and Air Quality Research,2017,17(4):1052-1062. doi: 10.4209/aaqr.2016.06.0256
    [30] KIM K, LEE C, KIM I, et al. Performance modifi cation of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning[J]. Fibers and Polymers,2009,10(1):60-64. doi: 10.1007/s12221-009-0060-6
    [31] 杜雪莹. 微/纳米纤维复合非织造保暖吸音材料的研究[D]. 上海: 东华大学, 2018.

    DU Xueying. Study on the composite sound absorption and thermal insulation nonwovens with micro/nano fibers[D]. Shanghai: Donghua University, 2018 (in Chinese).
    [32] 薛朝华, 张明明, 贾顺田. 聚丙烯腈纳米纤维空气过滤膜的制备及其性能[J]. 陕西科技大学学报, 2018, 36(1):1-6. doi: 10.3969/j.issn.1000-5811.2018.01.001

    XUE Chaohua, ZHANG Mingming, JIA Shuntian. Preparation and property of electrospun PAN nanofibrous membrane for air filtration[J]. Journal of Shaanxi University of Science & Technology,2018,36(1):1-6(in Chinese). doi: 10.3969/j.issn.1000-5811.2018.01.001
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  217
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 录用日期:  2019-09-30
  • 网络出版日期:  2019-10-31
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回