留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能

董晓星 金明生 王礼明 康杰 朱栋杰 计时鸣

董晓星, 金明生, 王礼明, 等. 用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能[J]. 复合材料学报, 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
引用本文: 董晓星, 金明生, 王礼明, 等. 用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能[J]. 复合材料学报, 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
DONG Xiaoxing, JIN Mingsheng, WANG Liming, et al. Preparation and properties of SiC or Al2O3 particles/rubber composites applied on functionally graded lapping and polishing plate[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003
Citation: DONG Xiaoxing, JIN Mingsheng, WANG Liming, et al. Preparation and properties of SiC or Al2O3 particles/rubber composites applied on functionally graded lapping and polishing plate[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1434-1441. doi: 10.13801/j.cnki.fhclxb.20191030.003

用于梯度功能研磨抛光盘的SiC或Al2O3颗粒/橡胶复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20191030.003
基金项目: 浙江省自然科学基金(LY17E050024);国家自然科学基金 (51205358)
详细信息
    通讯作者:

    金明生,博士,副教授,硕士生导师,研究方向为精密与超精密加工技术 E-mail:jinmingsheng@zjut.edu.cn

  • 中图分类号: TB332

Preparation and properties of SiC or Al2O3 particles/rubber composites applied on functionally graded lapping and polishing plate

  • 摘要: 以SiC或Al2O3磨粒为颗粒增强相,氯丁橡胶(CR)或丙烯酸酯橡胶(ACM)为基体制备了不同种类、不同质量比的磨粒与橡胶共混的颗粒/橡胶复合材料。当SiC与CR质量比小于50∶100时,同一配比多次重复实验,颗粒/橡胶复合材料杨氏模量值波动不明显,标准差最大值为1.09。针对橡胶的黏弹性导致工件与不同颗粒/橡胶复合材料动静态应力不一致的问题,通过振动测试和动态力学分析(DMA),发现在加工所需温度区间20~50℃,SiC/CR或Al2O3/CR复合材料与SiC/ACM复合材料相比,其动静态应力的最大偏差值分别为2.5%和16%,下降幅度明显,且DMA结果显示,SiC/CR或Al2O3/CR复合材料的损耗因子tanδ小于0.3,因此优选CR为梯度功能研磨抛光盘颗粒/橡胶复合材料的基体。

     

  • 图  1  颗粒/橡胶复合材料及研磨抛光盘制备过程

    Figure  1.  Preparation process of particles/rubber composites and lapping and polishing plate

    图  2  加工实验平台及测试仪器

    Figure  2.  Experimental platform and test instruments

    图  3  CR和50%SiC/CR复合材料的SEM图像

    Figure  3.  SEM images of CR and 50%SiC/CR composites

    图  4  不同制作工艺参数的SiC/CR复合材料表面形貌

    Figure  4.  Surface morphologies of SiC/CR composites with different fabrication parameters

    图  5  不同质量比颗粒/橡胶复合材料的杨氏模量

    Figure  5.  Young's moduli of particles/rubber composites with different mass ratios

    图  6  颗粒/橡胶复合材料动静态应力测试结果

    Figure  6.  Dynamic and static stress test results of particles/rubber composites

    图  7  交变应力滞后示意图

    Figure  7.  Schematic diagram of alternating stress lag

    图  8  不同颗粒/橡胶复合材料动态力学性能

    Figure  8.  Dynamic mechanical properties of different particles/rubber composites

    表  1  颗粒/橡胶复合材料样品质量比

    Table  1.   Mass ratios of particles/rubber composite samples

    SampleCR/gACM/gSiC/gAl2O3/gZnO/gMgO/gCH3(CH2)16COOH/gNO/g
    CR100000540.47.0
    20%SiC/CR1000200540.41.6
    50%SiC/CR1000500540.40
    20%Al2O3/CR1000020540.41.6
    50%Al2O3/CR1000050540.40
    ACM010000540.47.0
    20%SiC/ACM0100200540.41.6
    50%SiC/ACM0100500540.40
    Notes: CR—Chloroprene rubber; ACM—Acrylic rubber; NO—Naphthenic oil.
    下载: 导出CSV

    表  2  不同颗粒/橡胶复合材料邵氏硬度测量数据

    Table  2.   Measured data of shore hardness of different particles/rubber composites

    SampleHardness HAStandard deviation
    CR39.40.19
    50%SiC/CR89.20.77
    50%Al2O3/CR92.80.98
    ACM64.50.41
    50%SiC/ACM84.20.73
    下载: 导出CSV
  • [1] 白林山, 熊伟, 储向峰, 等. SiO2/CeO2复合磨粒的制备及在蓝宝石晶片抛光中的应用[J]. 光学精密工程, 2014, 22(5):1289-1295. doi: 10.3788/OPE.20142205.1289

    BAI Linshan, XIONG Wei, CHU Xiangfeng, et al. Preparation of nano SiO2/CeO2 composite particles and their applications to CMP on sapphire substrates[J]. Optics and Precision Engineering,2014,22(5):1289-1295(in Chinese). doi: 10.3788/OPE.20142205.1289
    [2] 罗巍, 周雪珍, 李艳花, 等. 超细锡铈复合氧化物的制备及其抛光性能[J]. 稀土, 2011, 32(3):14-18. doi: 10.3969/j.issn.1004-0277.2011.03.003

    LUO Wei, ZHOU Xuezhen, LI Yanhua, et al. Preparation of ultra-fine tin-cerium mixed oxides and their polishing performance for optical glass[J]. Chinese Rare Earths,2011,32(3):14-18(in Chinese). doi: 10.3969/j.issn.1004-0277.2011.03.003
    [3] ARMINI S, WHELAN C M, MOINPOUR M, et al. Composite polymer core-silica shell abrasives: Effect of polishing time and slurry solid content on oxide CMP[J]. Electrochemical and Solid-State Letters,2007,10(9):243-247. doi: 10.1149/1.2748631
    [4] ARMINI S, WHELAN C M, MOINPOUR M, et al. Composite polymer core-silica shell abrasives: The effect of the shape of thesilica particles on oxide CMP[J]. Journal of the Electrochemical Society,2008,155(6):401-406. doi: 10.1149/1.2901864
    [5] 陈杨, 李志娜, 宋志棠, 等. 内核尺寸对核/壳结构PS/SiO2复合磨料抛光特性的影响[J]. 功能材料, 2014, 45(19):19121-19127. doi: 10.3969/j.issn.1001-9731.2014.19.025

    CHEN Yang, LI Zhina, SONG Zhitang, et al. Effect of the core size of the core/shell structured PS/SiO2 composite abrasives on oxide-CMP behavior[J]. Journal of Functional Materials,2014,45(19):19121-19127(in Chinese). doi: 10.3969/j.issn.1001-9731.2014.19.025
    [6] MCALLISTER J, STUFFLE C, SAMPURNO Y, et al. Effect of conditioner type and downforce, and pad break-in time, on pad surface micro-texture in chemical mechanical planarization[J]. Journal of Solid State Science and Technology,2018,7(11):677-688. doi: 10.1149/2.0261811jss
    [7] WALDROP M M. The semiconductor industry will soon abandon its pursuit of moore's law. Now things could get a lot more interesting[J]. Nature,2016,530(7589):144-147. doi: 10.1038/530144a
    [8] DONG Y, LEI H, LIU W, et al. Preparation of non-spherical silica composite abrasives by lanthanum ion-induced effect and its chemical-mechanical polishing properties on sapphire substrates[J]. Journal of Materials Science,2018,53:10732-10742. doi: 10.1007/s10853-018-2357-6
    [9] LIN Z C, HUANG W S, TSAI J S. A study of material removal amount of sapphire wafer in application of chemical mechanical polishing with different polishing pads[J]. Journal of Mechanical Science and Technology,2012,26(8):2353-2364. doi: 10.1007/s12206-012-0613-2
    [10] 中国国家标准化管理委员会. 定负荷国际橡胶硬度计: GB/T 25940—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. IRHD dead-load testers: GB/T 25940—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [11] 中国国家标准化管理委员会. 塑料负荷变形温度的测定第2部分: 塑料和硬橡胶: GB/T 1634.2—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Plastics: Determination of temperature of deflection under load Part 2: Plastics and ebonite: GB/T 1634.2—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
    [12] VOLLENBERG P H T, HEIKENS D. Particle size dependence of the Young's modulus of filled polymers 1: Preliminary experiments[J]. Polymer,1989,30(9):1656-1662. doi: 10.1016/0032-3861(89)90326-1
    [13] VOLLENBERG P H T, DE HAAN J W, VAN DE VEN L J M, et al. Particle size dependence of the Young's modulus of filled polymers 2: Annealing and solid-state nuclear magnetic resonance experiments[J]. Polymer,1989,30(9):1663-1668. doi: 10.1016/0032-3861(89)90327-3
    [14] 胡娅婷, 冯莺, 陈占勋. 动态硫化热塑性弹性体的制备与应用[J]. 弹性体, 2007(3):71-75. doi: 10.3969/j.issn.1005-3174.2007.03.018

    HU Yating, FENG Ying, CHEN Zhanxun. Preparation and application of dynamically volcanized thermoplastic elastomer[J]. China Elastomerics,2007(3):71-75(in Chinese). doi: 10.3969/j.issn.1005-3174.2007.03.018
    [15] LIAO F S, SU A C, HSU T C J. Damping behavior of dynamically cured butyl rubber/polypropylene blends[J]. Polymer,1994,35(12):2579-2586. doi: 10.1016/0032-3861(94)90382-4
    [16] PIEDBOEUF M C, GAUVIN R, THOMAS M. Damping behavior of shape memory alloys: Strain amplitude, frequency and temperature effects[J]. Journal of Sound and Vibration,1998,214(5):885-901. doi: 10.1006/jsvi.1998.1578
    [17] 时姣, 王克俭, 刘杰, 等. 天然橡胶与其环氧化物并用胶基复合材料的黏弹阻尼性能[J]. 复合材料学报, 2018, 35(3):537-544.

    SHI Jiao, WANG Kejian, LIU Jie, et al. Viscoelastic damping properties of natural rubber-epoxidized natural rubber composites[J]. Acta Materiae Compositae Sinica,2018,35(3):537-544(in Chinese).
    [18] SIAKENG R, JAWAID M, ARIFFIN H, et al. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites[J]. Polymer Composites,2019,40(5):2000-2011. doi: 10.1002/pc.24978
    [19] PAYNA A R. The dynamic properties of carbon black loaded natural rubber vulcanizates: Part I[J]. Journal of Applied Polymer Science,1962,6(19):57-63. doi: 10.1002/app.1962.070061906
    [20] PAYNA A R. The dynamic properties of carbon black loaded natural rubber vulcanizates: Part II[J]. Journal of Applied Polymer Science,1962,6(21):368-372. doi: 10.1002/app.1962.070062115
    [21] 井龙, 王克俭, 王之恒, 等. 乙烯-醋酸乙烯酯共聚物增强硅橡胶复合材料的黏弹阻尼性能[J]. 复合材料学报, 2019, 36(1):261-268.

    JING Long, WANG Kejian, WANG Zhiheng, et al. Viscoelastic damping properties of ethylenevinyl acetate reinforced silicone rubber composites[J]. Acta Materiae Compositae Sinica,2019,36(1):261-268(in Chinese).
    [22] FANG Q, SONG B, TEE T T, et al. Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate[J]. Composites Part B: Engineering,2014,60:561-567. doi: 10.1016/j.compositesb.2014.01.010
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  130
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 录用日期:  2019-09-02
  • 网络出版日期:  2019-10-30
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回