留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管混凝土缺陷对徐变性能的影响

郝兆峰 张戎令 王起才 祁强 庄立普 黄国栋

郝兆峰, 张戎令, 王起才, 等. 钢管混凝土缺陷对徐变性能的影响[J]. 复合材料学报, 2020, 37(5): 1191-1199. doi: 10.13801/j.cnki.fhclxb.20191030.001
引用本文: 郝兆峰, 张戎令, 王起才, 等. 钢管混凝土缺陷对徐变性能的影响[J]. 复合材料学报, 2020, 37(5): 1191-1199. doi: 10.13801/j.cnki.fhclxb.20191030.001
HAO Zhaofeng, ZHANG Rongling, WANG Qicai, et al. Effect of concrete filled steel tube defect on creep property[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1191-1199. doi: 10.13801/j.cnki.fhclxb.20191030.001
Citation: HAO Zhaofeng, ZHANG Rongling, WANG Qicai, et al. Effect of concrete filled steel tube defect on creep property[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1191-1199. doi: 10.13801/j.cnki.fhclxb.20191030.001

钢管混凝土缺陷对徐变性能的影响

doi: 10.13801/j.cnki.fhclxb.20191030.001
基金项目: 青年人才托举工程;飞天学者特聘计划;长江学者和创新团队发展计划滚动支持(IRT_15R29);国家自然科学基金(51768033);甘肃省高校协同创新科技团队支持计划(2017C-08)
详细信息
    通讯作者:

    张戎令,博士,教授,硕士生导师,研究方向为干寒地区材料耐久性与结构全寿命关键技术及应用 Email:mogzrlggg@163.com

  • 中图分类号: TU398

Effect of concrete filled steel tube defect on creep property

  • 摘要: 为了研究钢管混凝土缺陷试件的徐变性能,进行了7组徐变试验研究,得到了钢管混凝土缺陷试件补强前后徐变度随持荷时间的变化曲线。研究结果表明:相较于无缺陷钢管混凝土,存在缺陷的钢管混凝土徐变度均有不同程度增大,其中,脱黏缺陷钢管混凝土试件的徐变度增量远大于空洞缺陷试件;脱黏缺陷削弱了钢管与混凝土之间的界面黏结,致使钢管与混凝土的应力重分布作用减弱,协同变形能力下降;空洞缺陷处混凝土由于发生应力集中而加剧了裂缝的产生和扩张,混凝土因此而发生错位滑移,增大了钢管混凝土的附加变形;注浆补强后,钢管混凝土的徐变变形减小,但相较于无缺陷钢管混凝土,缺陷补强钢管混凝土的徐变性能仍存在一定程度的折减。

     

  • 图  1  钢管混凝土缺陷示意图

    Figure  1.  Defect diagram of concrete filled steel tube

    图  2  浇筑过程中钢管混凝土典型照片

    Figure  2.  Typical photos of concrete-filled steel tube during pouring

    图  3  应变计和千分表布置

    Figure  3.  Arrangement of strain gauge and dial gauge

    图  4  钢管混凝土试件加载过程典型照片

    Figure  4.  Typical photos during loading of concrete filled steel tube specimen

    图  5  不同缺陷对钢管混凝土徐变度的影响

    Figure  5.  Influence of different defects on creep degree of concrete-filled steel tube

    图  6  缺陷补强后钢管混凝土的徐变度

    Figure  6.  Creep degree of concrete-filled steel tube after defect reinforcement

    图  7  钢管混凝土试件补强前后徐变度对比曲线

    Figure  7.  Comparison curves of creep degree of concrete filled steel tube specimens before and after reinforcement

    表  1  P.O42.5水泥性能指标

    Table  1.   Performance indexes of P.O42.5 cement

    Specific surface area/(m2·kg–1)Stability/mmChloride ion content/%Alkali content/%Ignition loss/%Sulfur trioxide content/%Initial setting time/minFinal setting time/minCompressive strength/MPa
    3 d28 d
    32620.0120.431.522.4418532521.748.6
    下载: 导出CSV

    表  2  膨胀剂性能参数

    Table  2.   Performance parameters of expansion agent

    Magnesium oxide content/%Total amount of alkali/%Chloride ion content/%Specific surface area/(m2·kg–1)Initial setting time/minFinal setting time/minLimited expansion rate/%Compressive strength/MPa
    7 d(Water)21 d (Air)3 d7 d
    3.380.580.0093161742590.036–0.01922.240.3
    下载: 导出CSV

    表  3  混凝土配比

    Table  3.   Mix ratio of concrete kg·m–3

    WaterCementFine aggregateCoarse aggregateExpansive agentWater reducing agent
    1804657641 05637.25.58
    下载: 导出CSV

    表  4  钢管混凝土试件主要参数

    Table  4.   Main parameters of concrete-filled steel tube specimens

    GroupSteel pipe diameter/mmSteel pipe height/mmSteel tube thickness/mmSlenderness ratioDefect rate/%Debonding thickness/mmUltimate capacity/kN
    P14035031000880
    C1403503106.60783
    E1403503106.60598
    D14035031001710
    RC14035031000811
    RE14035031000797
    RD14035031000863
    下载: 导出CSV

    表  5  混凝土抗压强度

    Table  5.   Concrete compressive strength

    Curing modeStandard curingSeal curingSealing and side limit curing
    Age/d714287142871428
    Compressive strength fCU/MPa48.1550.2954.549.9552.5655.7447.6254.3656.91
    下载: 导出CSV

    表  6  钢管混凝土缺陷试件补强前后徐变度

    Table  6.   Creep of concrete filled steel tube defect specimens before and after reinforcement 10–6 MPa–1

    Loading time/dPCEDRCRERD
    00000000
    1 7.53 9.00 8.1913.28 8.28 7.7811.42
    310.0912.0710.9818.5511.1010.4316.52
    511.0513.2212.0319.8712.1611.4316.80
    712.0114.3713.0718.9613.2212.4216.31
    912.9815.5214.1220.9914.2813.4118.05
    1113.2215.8114.8621.3814.5514.1218.39
    1314.1816.9615.4322.9315.6014.6618.27
    1514.4217.2415.6922.2615.8614.9119.98
    1715.1418.1116.4723.3716.6615.6520.58
    1915.2118.1916.5523.4916.7315.7220.20
    2116.2919.5417.7323.9617.9816.8420.61
    2316.2419.4317.6823.8917.8816.8020.55
    2516.5919.8418.0524.3918.2516.4320.98
    2716.8220.1218.3024.7318.5117.3921.27
    2916.8220.1218.3024.7318.5117.3921.27
    3217.3520.7518.8825.5119.0917.9423.27
    3618.0521.5819.6425.8919.8518.6622.27
    4018.4822.1020.1127.1720.3319.1023.37
    4418.9822.7020.6627.9220.8819.6324.01
    4819.9323.8420.8428.3621.1219.8024.39
    5219.6123.4521.3428.8321.5719.4224.79
    6019.9423.8521.7028.8721.9420.6224.83
    6820.2424.2022.0229.7622.2620.9225.59
    7720.9225.0022.7530.7423.0021.6126.44
    8721.3725.5523.2431.4123.0021.8926.47
    10721.9726.3923.9832.7323.8922.5728.02
    13723.0827.7724.4134.3924.9423.7328.84
    16723.9128.8325.6135.0625.8324.0229.23
    19724.6029.1425.7836.2326.2025.0630.09
    22724.5029.3326.7237.1926.8124.9931.66
    25725.5330.5427.0837.7727.3225.9932.26
    Notes: P is no defect component;C is the left cavity component;E is the edge cavity component;D is the ring penetration and debonding component;RC is the left cavity reinforcement component;RE is the edge cavity reinforcement component;RD is the debonding reinforcing component.
    下载: 导出CSV
  • [1] 韩林海. 钢管混凝土结构-理论与实践(第三版)[M]. 北京: 科学出版社, 2016.

    HAN Linhai. Concrete filled steel tubular structural from theory to practice[M]. Beijing: Science Press, 2016(in Chinese).
    [2] HAN L H, LI W, BJORHOVDE R. Developments and advanced applications of concrete-filledsteel tubular (CFST) structures: Members[J]. Journal of Constructional Steel Research,2014,100:211-228. doi: 10.1016/j.jcsr.2014.04.016
    [3] 王元丰. 钢管混凝土徐变理论[M]. 北京: 科学出版社, 2013.

    WANG Yuanfeng. Concrete filled steel tube creep[M]. Beijing: Science Press, 2013(in Chinese).
    [4] 胡守旺, 彭建新, 张建仁, 等. 钢管混凝土拱桥核心混凝土徐变效应可靠度分析[J]. 中国公路学报, 2017, 30(3):183-190. doi: 10.3969/j.issn.1001-7372.2017.03.020

    HU Shouwang, PENG Jianxin, ZHANG Jianren, et al. Reliability analysis of core concrete creep effect on concrete-filled steel tubular arch bridge[J]. China Journal of Highway and Transport,2017,30(3):183-190(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.020
    [5] 张戎令, 王起才, 马丽娜, 等. 膨胀剂掺量和含钢率对钢管混凝土徐变性能的影响[J]. 建筑材料学报, 2015, 18(5):749-756. doi: 10.3969/j.issn.1007-9629.2015.05.006

    ZHANG Rongling, WANG Qicai, MA Lina, et al. Effects of expanding agent content and steel ratio on creep characteristics of concrete filled steel tube[J]. Journal of Building Materials,2015,18(5):749-756(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.05.006
    [6] 张戎令, 王起才, 马丽娜. 微膨胀和侧向约束共同作用下混凝土徐变性能和孔结构的关系[J]. 硅酸盐学报, 2015, 43(5):585-593.

    ZHANG Rongling, WANG Qicai, MA Lina. Relations between pore structure and creep characteristics of concrete under micro-expanding and lateral restraints[J]. Journal of the Chinese Ceramic Society,2015,43(5):585-593(in Chinese).
    [7] ZHANG R L, MA L N, WANG Q C, et al. Experimental studies on the effect of properties and micro-structure on the creep of concrete-filled steel tubes[J]. Materials,2019,12(7):1046. doi: 10.3390/ma12071046
    [8] 张戎令, 王起才, 马丽娜, 等. 膨胀剂掺量和应力比对钢管混凝土徐变性能的影响[J]. 中南大学学报(自然科学版), 2014, 45(7):2416-2423.

    ZHANG Rongling, WANG Qicai, MA Lina, et al. Effect of interaction between expanding agent proportion and stress ratio on creep characteristics of concrete filed steel tube[J]. Journal of Central South University(Science and Technology),2014,45(7):2416-2423(in Chinese).
    [9] 张戎令, 王起才, 马丽娜, 等. 膨胀剂和钢管侧限对混凝土徐变应变的影响[J]. 复合材料学报, 2017, 34(9):2099-2105.

    ZHANG Rongling, WANG Qicai, MA Lina, et al. Effect of expanding agent proportion and lateral confinement by steel tube on the creep strain of concrete[J]. Acta Materiae Compositae Sinica,2017,34(9):2099-2105(in Chinese).
    [10] GENG Y, WANG Y Y, CHEN J. Time-dependent behaviour of steel tubular columns filled with recycled coarse aggregate concrete[J]. Journal of Constructional Steel Research,2016,122:455-468. doi: 10.1016/j.jcsr.2016.04.009
    [11] LUO K, PI Y L, GAO W, et al. Investigation into long-term behaviour and stability of concrete-filled steel tubular arches[J]. Journal of Constructional Steel Research,2015,104:127-136. doi: 10.1016/j.jcsr.2014.10.014
    [12] MA Y S, WANG Y F. Creep of high strength concrete filled steel tube columns[J]. Thin-Walled Structures,2012,53:91-98. doi: 10.1016/j.tws.2011.12.012
    [13] HAN L H, YE Y, LIAO F Y. Effects of core concrete initial imperfection on performance of eccentrically loaded CFST columns[J]. Journalof Structural Engineering,2016,142(12):04016132. doi: 10.1061/(ASCE)ST.1943-541X.0001604
    [14] 韩浩, 廖飞宇, 林挺伟, 等. 脱黏缺陷对钢管混凝土拉弯构件性能的影响分析[J]. 工业建筑, 2018, 48(3):170-175, 90.

    HAN Hao, LIAO Feiyu, LIN Tingwei, et al. Effects of concrete gap on the mechanical properties of CFST members subjected to bending and tension[J]. Industrial Construction,2018,48(3):170-175, 90(in Chinese).
    [15] 曲广龙, 李学彬, 纪明男, 等. 钢管混凝土注浆孔补强的短柱轴压试验[J]. 科技导报, 2013, 31(s2):24-29.

    QU Guanglong, LI Xuebin, JI Mingnan, et al. Axial compression test on reinforcement of the pouring hole on steel tube confined concrete[J]. Science & Technology Review,2013,31(s2):24-29(in Chinese).
    [16] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936—2014[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical code for concrete filled steel tubular structures: GB 50936—2014[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [19] 陈松林. 钢管混凝土收缩徐变试验研究[D]. 广州: 广州大学, 2018.

    CHEN Songlin. Experimental study on shrinkage and creep of concrete filled steel tube[D]. Guangzhou: Guangzhou University, 2018(in Chinese).
    [20] 陈志城, 阎培渝. 补偿收缩混凝土的自收缩特性[J]. 硅酸盐学报, 2010, 38(4):568-573.

    CHEN Zhicheng, YAN Peiyu. Autogenous shrinkage of shrinkage-compensating concrete[J]. Journal of the Chinese Ceramic Society,2010,38(4):568-573(in Chinese).
    [21] 赵哲. 钢管混凝土收缩徐变性能研究[D]. 成都: 西南交通大学, 2016.

    ZHAO Zhe. Study on shrinkage and creep of concrete filled steel tube[D]. Chengdu: Southwest Jiaotong University, 2011(in Chinese).
    [22] 杜向琴, 李宗利, 韩进生, 等. 水泥净浆、砂浆和混凝土等温干燥过程对抗压强度的影响[J]. 硅酸盐学报, 2019, 47(5):639-647.

    DU Xiangqin, LI Zongli, HAN Jinsheng, et al. Effect of isothermal drying process of cement paste, mortar and concrete on compressive strength[J]. Journal of the Chinese Ceramic Society,2019,47(5):639-647(in Chinese).
    [23] 吴泽弘, 魏亚. 基于CT扫描技术的水泥净浆微观结构及水化程度[J]. 复合材料学报, 2020, 37(4): 971-977.

    WU Zehong, WEI Ya. Microstructure and degree of hydration of cement paste based on CT[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 971-977(in Chinese).
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  100
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-14
  • 录用日期:  2019-10-16
  • 网络出版日期:  2019-10-30
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回