留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能

胡晓兰 周川 代少伟 刘文军 李伟东 周玉敬 邱虹 白华

胡晓兰, 周川, 代少伟, 等. 氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能[J]. 复合材料学报, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
引用本文: 胡晓兰, 周川, 代少伟, 等. 氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能[J]. 复合材料学报, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
Citation: HU Xiaolan, ZHOU Chuan, DAI Shaowei, et al. Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001

氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能

doi: 10.13801/j.cnki.fhclxb.20191021.001
基金项目: 国防基础科研计划(JCKY2017205C016);航空科学基金(2016ZF68011);福建省科技创新平台建设计划(2014H2006);厦门大学石墨烯工业技术研究院资助项目(2014I2005)
详细信息
    通讯作者:

    胡晓兰,博士,副教授,研究方向为高性能树脂基复合材料 E-mail:xlhu@xmu.edu.cn

  • 中图分类号: TB332

Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy composites with different fiber surface properties

  • 摘要: 通过模压成型,采用氧化石墨烯(GO)对四种碳纤维(CCF300、T700、CCF800、CCM40J)织物/环氧树脂(CF/EP)复合材料进行改性,通过复合材料的微观形貌、动态热力学性能等研究了GO对四种不同表面性质的CF/EP复合材料的改性效果。研究表明,添加GO后,GO/EP对四种CF的浸润性均比EP明显提高,纤维与GO/EP间的界面黏接比与EP基体间的黏接明显改善;CF/EP复合材料的破坏主要发生在CF与EP的界面,而GO的存在使GO-CF/EP复合材料的破坏由CF与EP基体的界面向GO/EP区域过渡。CF表面的氧碳比和沟槽均显著影响复合材料的玻璃化转变温度(Tg),具有最高表面氧碳比的GO-CCF300/EP复合材料表现出最高的Tg,但沟槽更丰富的CCM40J和CCF300碳纤维对CF/EP复合材料的Tg表现出更好的GO改性效果。

     

  • 图  1  四种CF表面的SEM图像

    Figure  1.  Surface SEM images of four CF ((a) CCF300, (b) T700, (c) CCF800, (d) CCM40J)

    图  2  四种CF/EP预浸料的表面形貌SEM图像

    Figure  2.  Surface SEM images of four CF/EP prepregs

    ((a), (b) CCF300/EP; (c), (d) GO-CCF300/EP; (e) GO-T700/EP; (f) GO-CCF800 /EP; (g), (h) GO-CCM40J/EP)

    图  3  CCF300/EP复合材料((a), (b)) 和GO质量分数为0.2wt%的GO-CCF300/EP((c), (d))复合材料断面的SEM图像

    Figure  3.  SEM images of cross-section of CCF300/EP composites((a), (b)) and GO-CCF300/EP composites with GO mass fraction of 0.2wt%((c), (d))

    图  4  CCF300/EP复合材料和GO质量分数为0.2wt%的GO-CCF300/EP复合材料的层间剪切性能

    Figure  4.  Interlaminar shear behaviors of CCF300/EP composites and GO-CCF300/EP composites with GO mass fraction of 0.2wt%

    图  5  T700/EP复合材料 ((a), (b))和GO质量分数为0.2wt%的GO-T700/EP复合材料((c), (d))断面的SEM图像

    Figure  5.  SEM images of cross-section of T700/EP composites((a), (b)) and GO-T700/EP composites with GO mass fraction of 0.2wt%((c), (d))

    图  6  CCF800/EP复合材料((a), (b))和GO质量分数为0.2wt%的GO-CCF800/EP复合材料((c), (d))断面的SEM图像

    Figure  6.  SEM images of cross-section of CCF800/EP composites((a), (b)) and GO-CCF800/EP composites with GO mass fraction of 0.2wt%((c), (d))

    图  7  CCM40J/EP复合材料((a), (b))和GO质量分数为0.2wt%的GO-CCM40J/EP复合材料((c), (d))断面的SEM图像

    Figure  7.  SEM images of cross-section of CCM40J/EP composites((a), (b)) and GO-CCM40J/EP composites with GO mass fraction of 0.2wt%((c), (d))

    图  8  CF/EP和GO-CF/EP复合材料的DMA曲线

    Figure  8.  DMA curves of CF/EP and GO-CF/EP composites

    图  9  CF/EP和GO-CF/EP复合材料的玻璃化转变温度Tg

    Figure  9.  Glass transition temperature (Tg) comparison of CF/EP and GO-CF/EP composites(—Difference of Tg)

    表  1  四种碳纤维(CF)和氧化石墨烯(GO)的基本性能

    Table  1.   Basic properties of four carbon fibers(CF) and graphene oxide(GO)

    MaterialsTensile strength/GPaTensile modulus/GPaDensity/(g·cm−3)Diameter/μmO/C atomic ratio
    CCF300 fiber[26]3.902201.787.00.32
    T700 fiber[30]4.902301.807.10.24
    CCF800 fiber[32]5.492901.815.30.24
    CCM40J fiber[36]4.413771.795.00.20
    GO1.16
     Note: Except O/C atomic ratio, other data are from the references.
    下载: 导出CSV
  • [1] CAI W, PINER R D, STADERMANN F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science,2008,321(5897):1815-1817. doi: 10.1126/science.1162369
    [2] WAN Y J, TANG L C, YAN D, et al. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J]. Composites Science & Technology,2013,82(15):60-68.
    [3] HERNÁNDEZ R J J, RAMÍREZ G R E, ESCOBEDO-MORALES A, et al. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide[J]. Journal of Molecular Modeling,2011,17(5):1133-1139. doi: 10.1007/s00894-010-0818-1
    [4] VACCHI I A, SPINATO C, RAYA J, et al. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR[J]. Nanoscale,2016,8(28):13714-13721. doi: 10.1039/C6NR03846H
    [5] SHAH R, KAUSAR A, MUHAMMAD B, et al. Progression from graphene and graphene oxide to high performance polymer-based nano composite: A review[J]. Journal of Macromolecular Science Part D: Reviews in Polymer Processing,2015,54(2):173-183.
    [6] AMMAR A, AL-ENIZI A M, ALMAADEED A A, et al. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes[J]. Arabian Journal of Chemistry,2016,9(2):274-286. doi: 10.1016/j.arabjc.2015.07.006
    [7] WANG T Y, TSAI J L. Investigating thermal conductivities of functionalized graphene and graphene/epoxy nano composites[J]. Computational Materials Science,2016,122:272-280. doi: 10.1016/j.commatsci.2016.05.039
    [8] SHEN X, WANG Z, WU Y, et al. Effect of functionalization on thermal conductivities of graphene/epoxy composites[J]. Carbon,2016,108:412-422. doi: 10.1016/j.carbon.2016.07.042
    [9] WAN Y J, TANG L C, GONG L X, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon,2014,69:467-480.
    [10] 周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315.

    ZHOU Hong, PU Mingxi, LI Qin, et al. Preparation and properties of graphene oxide nanosheeets/epoxy composites[J]. Acta Materiae Compositae Sinica,2015,32(5):1309-1315(in Chinese).
    [11] ZAMAN I, PHAN T T, KUAN H C, et al. Epoxy/graphene platelets nano composites with two levels of interface strength[J]. Polymer,2011,52(7):1603-1611. doi: 10.1016/j.polymer.2011.02.003
    [12] WANG Y, YANG C, MAI Y W, et al. Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites[J]. Carbon,2016,102:311-318. doi: 10.1016/j.carbon.2016.02.069
    [13] PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science & Technology,2016,135:28-38.
    [14] LI Y, ZHAO Y, SUN J, et al. Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J]. Polymer Composites,2016,37(8):2494-2502. doi: 10.1002/pc.23436
    [15] WATSON G, STAROST K, BARI P, et al. Tensile and flexural properties of hybrid graphene oxide/epoxy carbon fibre reinforced composites[C]//Materials Science and Engineering: 3rd International Conference on Structural Nano Composites. Scotland: IOP Publishing, 2017, 195: 012009.
    [16] NITAI A, SUMAN C, NARESH M, et al. Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite[J]. Crystals,2018,8(3):8030111. doi: 10.3390/cryst8030111
    [17] CHEN J, WANG K, ZHAO Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology,2018,154:175-186. doi: 10.1016/j.compscitech.2017.11.005
    [18] BHANUPRAKASH L, PARASURAM S, VARGHESE S. Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties[J]. Composites Science & Technology,2019,179:134-144.
    [19] KOSTAGIANNAKOPOULOU C, LOUTAS T H, SOTIRIADIS G, et al. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species[J]. Composites Science & Technology,2015,118:217-225.
    [20] ADAK N C, CHHETRI S, SABARAD S, et al. Direct observation of micro delamination in graphene oxide incorporated carbon fiber/epoxy composite via in-situ tensile test[J]. Composites Science & Technology,2019,177:57-65.
    [21] JR W S H, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339. doi: 10.1021/ja01539a017
    [22] ASTM International. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028—07[S]. West Conshohocken: ASTM International, 2015.
    [23] QIAN X, ZHI J, CHEN L, et al. Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites[J]. Surface & Interface Analysis,2013,45(5):937-942.
    [24] 邹豪, 李伟东, 彭公秋, 等. 高模型碳纤维的发展现状及其在航天领域的应用[J]. 合成纤维, 2017, 46(6):17-22.

    ZHOU Hao, LI Weidong, PENG Gongqiu, et al. The development situation of high modulus carbon fiber and its applications in aerospace[J]. Synthetic Fiber in China,2017,46(6):17-22(in Chinese).
    [25] DAI Z S, ZHANG B Y, SHI F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science,2011,257(15):6980-6985. doi: 10.1016/j.apsusc.2011.03.047
    [26] 李阳, 肇研, 刘刚, 等. 国产CCF300碳纤维及其NCF织物的性能[J]. 航空学报, 2014, 35(10):2889-2900.

    LI Yang, ZHAO Yan, LIU Gang, et al. Properties of domestic CCF300 carbon fiber and its NCP fabrics[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2889-2900(in Chinese).
    [27] 张敏, 朱波, 王成国, 等. 用SEM研究碳纤维的表面及断口形貌[J]. 功能材料, 2010, 41(10):1731-1733.

    ZHANG Min, ZHU Bo, WANG Chengguo, et al. Surface and fracture morphologies of carbon fibers observed by SEM[J]. Journal of Functional Materials,2010,41(10):1731-1733(in Chinese).
    [28] 张冬冬, 杨永岗, 谭松培, 等. 碳纤维表面状态对其复合材料性能的影响[J]. 化工新型材料, 2014(1):73-76.

    ZHANG Dongdong, YANG Yonggang, TAN Songpei, et al. Effect of the surface status of carbon fiber on the properties of its composite with epoxy resin[J]. New Chemical Materials,2014(1):73-76(in Chinese).
    [29] ZHOU Y, BASEER M A, MAHFUZ H, et al. Statistical analysis on the fatigue strength distribution of T700 carbon fiber[J]. Composites Science & Technology,2006,66(13):2100-2106.
    [30] LI B, ZHANG C R, CAO F, et al. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Materials Science & Engineering A,2007,471(1):169-173.
    [31] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.

    LI Weidong, ZHANG Jindong, LIU Gang, et al. Interfacial and mechanical properties of domestic T800 carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese).
    [32] 钟翔屿, 张代军, 包建文, 等. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8):55-61.

    ZHONG Xiangyu, ZHANG Daijun, BAO Jianwen, et al. Influence of content of toughening thermoplastic on mode-Ⅰ interlaminar fracture toughness of epoxy composite reinforced by CCF800H carbon fiber[J]. Journal of Materials Engineering,2017,45(8):55-61(in Chinese).
    [33] 陈伟明, 王成忠, 周同悦, 等. 高性能T800碳纤维复合材料树脂基体[J]. 复合材料学报, 2006, 23(4):29-35. doi: 10.3321/j.issn:1000-3851.2006.04.006

    CHEN Weiming, WANG Chengzhong, ZHOU Tongyue, et al. High-performance resin matrix for T800 carbon fiber composites[J]. Acta Materiae Compositae Sinica,2006,23(4):29-35(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.04.006
    [34] 罗云烽, 李阳, 肇研, 等. 国产T800级炭纤维表面特性及其复合材料微观界面性能[J]. 材料工程, 2014(9):83-88. doi: 10.11868/j.issn.1001-4381.2014.09.014

    LUO Yunfeng, LI Yang, ZHAO Yan, et al. Surface characteristics of domestic T800-grade carbon fibers and microscopic interphase properties of composites[J]. Journal of Materials Engineering,2014(9):83-88(in Chinese). doi: 10.11868/j.issn.1001-4381.2014.09.014
    [35] WEI S, GU A, LIANG G, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science,2011,257(9):4069-4074. doi: 10.1016/j.apsusc.2010.11.177
    [36] 刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43. doi: 10.3969/j.issn.1006-3536.2009.01.017

    LIU Fujie, WANG Haojing, FAN Lidong, et al. Analysis on the microstructure of MJ series carbon fibers[J]. New Chemical Materials,2009,37(1):41-43(in Chinese). doi: 10.3969/j.issn.1006-3536.2009.01.017
    [37] 徐永新, 顾轶卓, 马全胜, 等. 几种国产高模碳纤维特性实验分析[J]. 复合材料学报, 2016, 33(9):1905-1914.

    XU Yongxin, GU Yizhuo, MA Quansheng, et al. Experimental analysis of properties of several domestic high-modulus carbon fibers[J]. Acta Materiae Compositae Sinica,2016,33(9):1905-1914(in Chinese).
    [38] ZHONG Y, BIAN W. Analysis of the tensile moduli affected by microstructures among seven types of carbon fibers[J]. Composites Part B: Engineering,2017,110:178-184. doi: 10.1016/j.compositesb.2016.11.032
    [39] LI D, LU C, WANG L, et al. A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science & Engineering A,2017,685:65-70.
    [40] 李林. T800级碳纤维及石墨纤维微观结构的表征与性能分析[D]. 绵阳: 西南科技大学, 2017.

    LI Lin. Microstructure characterization and property analysis of T800 carbon fibers and graphite fibers[D]. Mianyang: Southwest University of Science and Technology, 2017(in Chinese).
    [41] 代少伟, 李伟东, 邱虹, 等. 氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能[J]. 厦门大学学报(自然科学版), 2019, 58(3):324-331.

    DAI Shaowei, LI Weidong, QIU Hong, et al. Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites[J]. Journal of Xiamen University(Natural Science),2019,58(3):324-331(in Chinese).
    [42] SHEN X J, PEI X Q, FU S Y, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer,2013,54(3):1234-1242. doi: 10.1016/j.polymer.2012.12.064
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  173
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 录用日期:  2019-08-22
  • 网络出版日期:  2019-10-21
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回