留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响

韩耀璋 李进 张佃平 康少付 马鹏 周少雄

韩耀璋, 李进, 张佃平, 等. 原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响[J]. 复合材料学报, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
引用本文: 韩耀璋, 李进, 张佃平, 等. 原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响[J]. 复合材料学报, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
HAN Yaozhang, LI Jin, ZHANG Dianping, et al. Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001
Citation: HAN Yaozhang, LI Jin, ZHANG Dianping, et al. Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1531-1538. doi: 10.13801/j.cnki.fhclxb.20191017.001

原位在线监测多因素协同对玻璃纤维/环氧树脂复合材料热老化性能的影响

doi: 10.13801/j.cnki.fhclxb.20191017.001
基金项目: 宁夏自治区重点研发项目(2018BDE02048);宁夏自然科学基金(NZ17259)
详细信息
    通讯作者:

    李进,博士,教授,博士生导师,研究方向为聚合物基复合材料结构设计、制造、仿真及光伏材料 E-mail:li-jin@163.com

  • 中图分类号: TB332

Effects of multiple factors on thermal aging properties of glass fiber/epoxy composites using in-situ monitoring

  • 摘要: 针对玻璃纤维增强聚合物(GFRP)复合材料作为火电烟囱内衬的服役老化问题,以玻璃纤维/环氧树脂(GF/EP)复合材料为研究对象,用正交试验法研究温度、偶联剂含量和热流老化时间等因素对GF/EP复合材料热损伤后的质量损失率、弯曲强度和剪切性能的影响。采用金相显微图像处理法测量计算GF/EP复合材料的孔隙率,使用自主设计并搭建的原位在线监测系统对GF/EP复合材料进行测试。结果表明,不同因素对GF/EP复合材料性能的影响程度不同。偶联剂含量的增加会有限改善GF/EP复合材料的质量损失率,而温度因素对复合材料弯曲强度的影响较大,复合材料本身存在的后固化行为会影响弯曲性能的变化趋势,随温度升高弯曲强度总体下降了11.8%。GF/EP复合材料的层间剪切强度与热老化时间密切相关,16 h相比8 h热流老化后的层间剪切强度均值提高了10.2%。

     

  • 图  1  玻璃纤维/环氧树脂(GF/EP)复合材料固化流程

    Figure  1.  Curing flow chart of glass fiber/epoxy(GF/EP) composites

    图  2  原位在线监测系统

    Figure  2.  In-situ real-time detection system

    图  3  Image-J处理GF/EP复合材料抛光图像

    Figure  3.  Images of GF/EP composite polishing processed by Image-J ((a)–(c) 100 times different regions before threshold segmentation images;(d)–(f) Corresponding threshold segmentation images)

    图  4  GF/EP复合材料的孔隙率-温度变化曲线

    Figure  4.  Porosity-temperature curve of GF/EP composite

    图  5  90℃(a)和100℃(b)下GF/EP复合材料层间形貌的SEM图像

    Figure  5.  SEM images of interlayer morphologies of GF/EP composite at 90℃(a) and 100℃(b)

    图  6  不同因素对GF/EEP复合材料弯曲强度的影响

    Figure  6.  Effects of different factors on bending strength of GF/EP composite

    图  7  不同因素对GF/EP复合材料ILSS的影响

    Figure  7.  Influence of different factors on ILSS of GF/EP composite

    表  1  多因素正交试验设计

    Table  1.   Design of orthogonal experiment with multi-factors

    Factor numberTemperature/℃Coupling agent content/vol%Aging
    time/h
    P1 70 0.5 8
    P2 70 1 16
    P3 80 0.5 8
    P4 80 1 16
    P5 90 0.5 16
    P6 90 1 8
    P7 100 0.5 16
    P8 100 1 8
    下载: 导出CSV

    表  2  GF/EP复合材料热老化后的质量损失率

    Table  2.   Quality loss rates of GF/EP composite after hot aging

    No.Temperature/℃Coupling agent content/vol%Aging time/hMass loss rate/%
    P1 70 0.5 8 −0.22
    P2 70 1 16 −0.26
    P3 80 0.5 8 −0.18
    P4 80 1 16 −0.19
    P5 90 0.5 16 −0.05
    P6 90 1 8 −0.69
    P7 100 0.5 16 −0.12
    P8 100 1 8 −0.61
    K1 −0.48 −0.57 −1.7
    K2 −0.37 −1.75 −0.62
    K3 −0.74
    K4 −0.73
    Range 0.37 1.18 1.08
    Influence degree Coupling agent content>Aging time>Temperature
    Optimal level 80℃ 0.5 vol% 16 h
    Optimal solution 80℃-0.5 vol%-16 h
    Note: Ki represents the sum of experimental results corresponding to any level sign i (i=1,2,3,4).
    下载: 导出CSV

    表  3  GF/EP复合材料热老化后的弯曲性能

    Table  3.   Bending properties of GF/EP composite after hot aging

    No.Temperature/℃Coupling agent
    content/vol%
    Aging time/hAverage strength/GPa
    K1 1.5847 2.8402 2.892 0.7097
    K2 1.3877 2.8376 2.7858
    K3 1.3077
    K4 1.3977
    Range 0.277 0.0026 0.1062
    Influence degree Temperature>Time>Content
    Optimal level 70℃ 0.5 vol% 8 h
    Optimal solution 70℃-0.5 vol%-8 h
    下载: 导出CSV

    表  4  经过热流老化后GF/EP复合材料的剪切强度(ILSS)

    Table  4.   Interlaminar shear strength(ILSS) of GF/EP composite after hot aging

    No.Temperature/℃Coupling agent content/vol%Aging time/hAverage ILSS/GPa
    K1 0.0925 0.1762 0.1700 0.0447
    K2 0.0857 0.1812 0.1874
    K3 0.0936
    K4 0.0856
    Range 0.008 0.005 0.0174
    Influence degree Time>Temperature>Content
    Optimal level 90℃ 1 vol% 16 h
    Optimal solution 90℃-1 vol%-16 h
    下载: 导出CSV
  • [1] 彭楚渊. 火电厂烟囱出口烟气温度的估算[J]. 电力技术, 1984(8):9-12.

    PENG Chuyuan. Estimation of flue gas temperature at chimney outlet of thermal power plant[J]. Power Technology,1984(8):9-12(in Chinese).
    [2] 余宗学, 马瑜, 何毅, 等. TiO2-GO的制备及TiO2-GO/环氧树脂涂层的抗腐蚀性能[J]. 复合材料学报, 2015, 32(4):1017-1024.

    YU Zongxue, MA Yu, HE Yi, et al. Preparation of TiO2-GO and corrosion resistance of TiO2-GO/epoxy resin coating[J]. Acta Materiae Compositae Sinica,2015,32(4):1017-1024(in Chinese).
    [3] 杨斌, 章继峰, 梁文彦, 等. 玻璃纤维表面纳米SiO2改性对GF/PCBT复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(3):691-698.

    YANG Bin, ZHANG Jifeng, LIANG Wenyan, et al. Effects of nano-SiO2 modification on the mechanical properties of GF/PCBT composites[J]. Acta Materiae Compositae Sinica,2015,32(3):691-698(in Chinese).
    [4] 程基伟, 王天民. 取向玻璃纤维增强塑料的应力腐蚀开裂研究[J]. 复合材料学报, 2004, 21(6):39-46. doi: 10.3321/j.issn:1000-3851.2004.06.007

    CHENG J W, WANG T M. Stress corrosion cracking of oriented glass fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2004,21(6):39-46(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.007
    [5] 程圣, 张沛红, 邵琦. 纳米SiO2/环氧桐马酸酐黏合剂的力学特性和老化特性[J]. 复合材料学报, 2017, 34(3):582-587.

    CHENG Sheng, ZHANG Peihong, SHAO Qi. Mechanical and aging properties of nano SiO2/epoxy tung-maleic anhydride adhesive[J]. Acta Materiae Compositae Sinica,2017,34(3):582-587(in Chinese).
    [6] ZHANG R L, GAO B, ZHANG J, et al. Propagation of PAMAM dendrimers on the carbon fiber surface by in situ polymerization: A novel methodology for fiber/matrix composites[J]. Applied Surface Science,2015,359:812-818. doi: 10.1016/j.apsusc.2015.10.204
    [7] MA L, MENG L, WU G, et al. Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol[J]. Composites Science and Technology,2015,114:64-71. doi: 10.1016/j.compscitech.2015.04.011
    [8] BENYAHIA H, TARFAOUI M, EL MOUMEN A, et al. Mechanical properties of offshoring polymer composite pipes at various temperatures[J]. Composites Part B: Engineering,2018,152:231-240.
    [9] 马少华, 许赞, 许良, 等. 湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J]. 高分子材料科学与工程, 2008, 34(3):54-59, 66.

    MA Shaohua, XU Zan, XU Liang, et al. Effect of wet-heat cycling aging on interfacial properties of carbon fiber reinforced shuangma resin matrix composites[J]. Polymer Materials Science and Engineering,2008,34(3):54-59, 66(in Chinese).
    [10] KUMAR D S, SHUKLA M J, MAHATO K K, et al. Effect of post-curing on thermal and mechanical behavior of GFRP composites[C]//IOP Conference Series: Materials Science and Engineering. Rourkela: IOP Publishing Ltd., 2015.
    [11] YANG W, ZHANG Y R, YUEN A C Y , et al. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1, 4-butylene terephthalate)[J]. Chemical Engineering Journal,2017,321:257-267.
    [12] LU Y, KHANAL S, AHMED S, et al. Mechanical and thermal properties of poly(vinyl chloride) composites filled with carbon microspheres chemically modified by a biopolymer coupling agent[J]. Composites Science and Technology,2019,172:29-35.
    [13] PEDRAZZOLI D, PEGORETTI A. Silica nanoparticles as coupling agents for polypropylene/glass composites[J]. Composites Science and Technology,2013,76:77-83.
    [14] PEDRAZZOLI D, PEGORETTI A. Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing,2014,66:25-34.
    [15] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B: Engineering,2019,163:511-521.
    [16] 罗霞, 俞科静, 王梦蕾, 等. 硅烷偶联剂对玻璃纤维/聚氨酯复合材料性能的影响研究[J]. 化工新型材料, 2017, 45(8):81-83.

    LUO Xia, YU Kejing, WANG Menglei, et al. Effect of silane coupling agent on properties of glass fiber/polyurethane composites[J]. New Chemical Materials,2017,45(8):81-83(in Chinese).
    [17] ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264M—15[S]. West Conshohocken: ASTM International, 2015.
    [18] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344M—16[S]. West Conshohocken: ASTM International, 2016.
    [19] 林莉, 罗明, 郭广平, 等. 碳纤维复合材料孔隙率超声声阻抗法监测[J]. 复合材料学报, 2009, 26(3):105-110. doi: 10.3321/j.issn:1000-3851.2009.03.019

    LIN Li, LUO Ming, GUO Guangping, et al. Ultrasonic acoustic impedance monitoring of porosity of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2009,26(3):105-110(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.019
    [20] 熊需海, 张朝鹏, 任荣, 等. 高温真空老化对X2101双马树脂基复合材料结构及力学性能的影响[J]. 装备环境工程, 2018, 15(2):14-18.

    XIONG Xuhai, ZHANG Chaopeng, REN Rong, et al. Effect of vacuum aging on properties and structure of X2101 BMI matrix composites[J]. Equipment Environmental Engineering,2018,15(2):14-18(in Chinese).
    [21] 王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.

    WANG Xiaodong, YUN Sining, ZHANG Taihong, et al. Advances in basalt fiber-reinforced composites modified by silane coupling agents[J]. Materials Review,2017,31(5):77-83(in Chinese).
    [22] 张志坚, 花蕾, 李焕兴, 等. 硅烷偶联剂在玻纤增强复合材料领域中的应用[J]. 玻璃纤维, 2013(3):11-22. doi: 10.3969/j.issn.1005-6262.2013.03.003

    ZHANG Zhijian, HUA Lei, LI Huanxing, et al. Use of silane coupling agents in glass fiber reinforced composites[J]. Fiber Glass,2013(3):11-22(in Chinese). doi: 10.3969/j.issn.1005-6262.2013.03.003
    [23] SERETIS G V, NITODAS S F, MIMIGIANNI P D, et al. On the post-curing of graphene nanoplatelets reinforced hand lay-up glass fabric/epoxy nanocomposites[J]. Composites Part B: Engineering,2018,146:133-138.
    [24] ARSLAN C, DOGAN M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites[J]. Composites Part B: Engineering,2018,146:145-154.
    [25] RATHORE D K, SINGH B P, MOHANTY S C, et al. Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite[J]. Composites Communications,2016,1:29-32.
    [26] KWON D J, SHIN P S, KIM J H, et al. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles[J]. Composites Part B: Engineering,2017,130:46-53.
    [27] GALLEGO J M, CZADERSKI C, BREVEGLIERI M, et al. Fatigue behaviour at elevated temperature of RC slabs strengthened with EB CFRP strips[J]. Composites Part B: Engineering,2018,141:37-49.
    [28] 张静静, 段玉岗, 赵新明. 辐照剂量及后固化温度对低能电子束分层固化复合材料层间性能的影响[J]. 机械工程材料, 2017, 41(5):43-48. doi: 10.11973/jxgccl201705009

    ZHANG Jingjing, DUAN Yugang, ZHAO Xinming. Effect of irradiation dose and post-curing temperature on interlaminar properties of composite stepwise cured by low energy E-beam[J]. Materials for Mechanical Engineering,2017,41(5):43-48(in Chinese). doi: 10.11973/jxgccl201705009
    [29] XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):806-819.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  220
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 录用日期:  2019-10-13
  • 网络出版日期:  2019-10-17
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回