留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生柔性防护装具的设计及防弹性能测试

朱德举 赵波

朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6): 1411-1417. doi: 10.13801/j.cnki.fhclxb.20191015.001
引用本文: 朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6): 1411-1417. doi: 10.13801/j.cnki.fhclxb.20191015.001
ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1411-1417. doi: 10.13801/j.cnki.fhclxb.20191015.001
Citation: ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1411-1417. doi: 10.13801/j.cnki.fhclxb.20191015.001

仿生柔性防护装具的设计及防弹性能测试

doi: 10.13801/j.cnki.fhclxb.20191015.001
基金项目: 国防科技创新特区项目(19-H863-03-ZT-003-033-01);湖南省重点研发计划项目(2017GK2130);湖湘高层次人才聚集工程-创新人才(2018RS3057)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生研究、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析、冲击和高应变率试验技术 E-mail:dzhu@hnu.edu.cn

  • 中图分类号: Q66

Design and ballistic performance testing of bio-inspired flexible protection devices

  • 摘要: 依据仿生学原理,借鉴硬骨鱼鳞的微观结构及叠加模式,设计并制备了6套仿生柔性防护装具。使用了两种复合鳞片,分别为SiC陶瓷-超高分子量聚乙烯(UHMWPE)复合防护鳞片和Al2O3陶瓷-UHMWPE复合防护鳞片。对柔性防护装具进行侵彻测试,分析了复合鳞片类型、覆盖角度和子弹侵彻位置对柔性鳞片防护装具防弹性能的影响。结果表明,新型柔性鳞片状防护装具均能成功抵挡速度为(445±10) m/s的手枪弹(铅芯)侵彻,垫层材料的凹陷深度为5~20 mm。SiC-UHMWPE复合鳞片防护装具的防弹性能显著优于Al2O3-UHMWPE复合鳞片防护装具。此外,柔性防护装具的防弹性能均随着鳞片覆盖率的增加而提高。本研究成果为新型柔性防护装具的设计提供理论依据和科学指导。

     

  • 图  1  复合鳞片设计示意图

    Figure  1.  Scheme of composite scale design

    图  2  UHMWPE无纺布

    Figure  2.  UHMWPE fabric

    图  3  两种复合仿生鳞片

    Figure  3.  Two compound bionic scales

    图  4  柔性鳞片状防护装具叠加模式

    Figure  4.  Stacking mode of composite scales in flexible protective device

    图  5  柔性防护装具的X光图像

    Figure  5.  X-ray images of the flexible protective devices

    图  6  柔性防护装具影响区域的划分

    Figure  6.  Division of affecting zones in flexible protective device

    图  7  弹道试验装置[21]

    Figure  7.  Ballistic testing setup[21]

    图  8  SiC-UHMWPE复合鳞片的破坏形貌

    Figure  8.  Damage morphologies of SiC-UHMWPE composite scale

    图  9  Al2O3-UHMWPE复合鳞片的破坏形貌

    Figure  9.  Damage morphologies of Al2O3-UHMWPE composite scale

    图  10  UHMWPE的破坏形貌

    Figure  10.  Damage morphologies of UHMWPE layer

    图  11  防护装具不同区域(图6)的凹陷深度与覆盖角度关系曲线

    Figure  11.  Backing layer signature versus overlapping angle curves of protective devices in different impact regions (Fig.6)

    图  12  测试后的柔性防护装具X光图像

    Figure  12.  X-ray images of the flexible protection devices after testing

    图  13  弹道测试前后子弹的形貌

    Figure  13.  Morphologies of the bullet before and after testing

    表  1  SiC和Al2O3陶瓷的材料性能

    Table  1.   Properties of SiC and Al2O3 ceramics

    Density/(g·cm−3)Vickers hardness/HVBending strength/MPaFracture toughness/(MPa·m1/2)Elastic modulus/GPaPurity/%
    SiC3.12 6004004410≥98
    Al2O33.881 4402403.6366≥99
    下载: 导出CSV

    表  2  超高分子量聚乙烯(UHMWPE)纤维和Kevlar纤维的材料性能

    Table  2.   Properties of ultra-high molecular weight polyethylene(UHMWPE) fiber and Kevlar fiber

    Density/(g·cm−3)Tensile strength/GPaTensile modlus/GPaElongationat break/%Sonic speed in monofilament/(103m·s−1)
    UHMWPE0.972.7873.59.5
    Kevlar-491.443.38833.38.2
    下载: 导出CSV

    表  3  柔性鳞片状防护装具的陶瓷材料和覆盖角

    Table  3.   Ceramic materials and overlapping angles of flexible protective devices

    Serial numberTypes of materialOverlapping angle/(°)
    A-70Al2O370
    A-80Al2O380
    A-90Al2O390
    S-70SiC70
    S-80SiC80
    S-90SiC90
    下载: 导出CSV

    表  4  测试后柔性防护装具的破坏区域直径

    Table  4.   Diameter of the damage area of the flexible protection devices after testing

    A-70A-80A-90S-70S-80S-90
    D1/mm58.0(3.6)62.8(1.2)81.0(1.3)57.6(1.5)63.8(1.6)80.0(1.5)
    D2/mm68.0(3.2)72.4(1.3)91.8(0.7)78.8(1.0)82.6(1.1)95.0(1.6)
    Notes: D1, D2—Diameters of the damage regions after the bullet hitting the zone I and zone II in the flexible protective devices; Values in parentheses represent the standard deviations.
    下载: 导出CSV
  • [1] FISCHER H. Military casualty statistics: Operation new dawn, operation Iraqi freedom, and operation enduring freedom[R]. Congressional Research Service Reports, U.S., 2013: 1-13
    [2] 许冬梅, 刘元坤, 艾青松, 等. 防弹衣中防凹陷材料的应用研究[J]. 中国个体防护装备, 2015(5):9-11.

    XU Dongmei, LIU Yuankun, AI Qingsong, et al. Study on the application of anti-trauma material in body armor[J]. Chinese Individual Protective Equipment,2015(5):9-11(in Chinese).
    [3] DURO-ROYO J, ZOLOTOVSKY K, MOGAS-SOLDEVILA L, et al. Metamesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces[J]. Computer-Aided Design,2015,60:14-27. doi: 10.1016/j.cad.2014.05.005
    [4] GONZÁLEZ-ALBUIXECH V F, RODRÍGUEZ-MILLÁN M, ITO T, et al. Numerical analysis for design of bioin-spired ceramic modular armors for ballistic protections[J]. International Journal of Damage Mechanics,2019,28(6):815-837. doi: 10.1177/1056789518795203
    [5] TASDEMIRCI A, TUNUSOGLU G, GÜDEN M. The effect of the interlayer on the ballistic performance of ce-ramic/composite armors: Experimental and numerical study[J]. International Journal of Impact Engineering,2012,44:1-9.
    [6] CHRISTIAN K, DUANE C, MICHAEL W, et al. Influence of material properties on the ballistic performance of ceramics for personal body armour[J]. Shock and Vibration,2003,10(1):51-58. doi: 10.1155/2003/357637
    [7] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures,2015,133:191-201. doi: 10.1016/j.compstruct.2015.06.081
    [8] NILAKANTAN G, NUTT S. Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor[J]. Composite Structures,2014,116(1):661-669.
    [9] LIU W, CHEN Z, CHEN Z, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor[J]. Materials & Design,2015,87:421-427.
    [10] LIU W, CHEN Z, CHENG X, et al. Design and ballistic penetration of the ceramic composite armor[J]. Composites Part B: Engineering,2016,84(2):33-40.
    [11] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International,2017,43(13):10368-10376. doi: 10.1016/j.ceramint.2017.05.071
    [12] SIGNETTI S, PUGNO N M. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection[J]. Journal of the European Ceramic Society,2014,34(11):2823-2831. doi: 10.1016/j.jeurceramsoc.2013.12.039
    [13] FUNK N, VERA M, SZEWCIW L J, et al. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J]. ACS Applied Materials & Interfaces,2015,7(10):5972-5983.
    [14] XIA L. Design and analysis of bio-inspired 3D printing body armor for neck support and protection[D]. US: Massachusetts Institute of Technology, 2018.
    [15] LIU P, ZHU D, WANG J, et al. Structure, mechanical behavior and puncture resistance of grass carp scales[J]. Journal of Bionic Engineering,2017,14(2):356-368. doi: 10.1016/S1672-6529(16)60404-3
    [16] ZHU D, ZHANG C, LIU P, et al. Comparison of the mor-phology, structures and mechanical properties of teleost fish scales collected from New Zealand[J]. Journal of Bionic Engineering,2019,16(2):328-336. doi: 10.1007/s42235-019-0028-1
    [17] ZHU D, ORTEGA C F, MOTAMEDI R, et al. Structure and mechanical performance of a “modern” fish scale[J]. Advanced Engineering Materials,2012,14(4):B185-B194. doi: 10.1002/adem.201180057
    [18] LIU P, ZHU D, YAO Y, et al. Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system[J]. Materials & Design,2016,99:201-210.
    [19] 刘鹏. 鳞片多级结构、力学性能及其仿生研究[D]. 长沙: 湖南大学, 2017.

    LIU Peng. The research on hierarchical structure mechan-ical behavior and biomimetics of fish scales[D]. Changsha: Hunan University, 2017(in Chinese).
    [20] ROSSET W S D. Patterned armor performance evalua-tion[J]. International Journal of Impact Engineering,2004,31(10):1223-1234.
    [21] 崔凤单, 马天, 李伟萍, 等. SiC和B4C防弹插板抗多发弹打击损伤特性研究[J]. 无机材料学报, 2017(9):967-972.

    CUI Fengdan, MA Tian, LI Weiping, et al. Damage characteristics of SiC and B4C ballistic insert plates subjected to multi-hit[J]. Journal of Inorganic Materials,2017(9):967-972(in Chinese).
    [22] MEDVEDOVSKI E. Ballistic performance of armour ce-ramics: Influence of design and structure. Part 1[J]. Ceram-ics International,2010,36(7):2103-2115. doi: 10.1016/j.ceramint.2010.05.021
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  301
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 录用日期:  2019-10-10
  • 网络出版日期:  2019-10-15
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回