留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料翼面壁板剪切稳定性

石经纬 赵娟 刘传军 李东升

石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板剪切稳定性[J]. 复合材料学报, 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001
引用本文: 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板剪切稳定性[J]. 复合材料学报, 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001
SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001
Citation: SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600. doi: 10.13801/j.cnki.fhclxb.20191011.001

复合材料翼面壁板剪切稳定性

doi: 10.13801/j.cnki.fhclxb.20191011.001
基金项目: 工信部民机专项基金(MJ-2017-F-20)
详细信息
    通讯作者:

    石经纬,博士,工程师,研究方向为复合材料民机结构有限元分析 E-mail:shijingwei@comac.cc

  • 中图分类号: TB332

Stability of composite stiffened panels in plane shear

  • 摘要: 基于长桁铺层数不同的两块复合材料翼面T型加筋壁板试件SS-1和SS-2开展剪切稳定性试验。试件SS-1和SS-2的L型层合板铺层分别为11层和14层,腹板铺层分别为22层和28层,缘条铺层分别为15层和18层。采用提出的工程方法进行壁板的剪切屈曲应变分析,方法中考虑了长桁尺寸和铺层数的影响,并应用有限元弧长法进行试件屈曲载荷、后屈曲承载能力及剪切屈曲模态分析。试验结果表明,屈曲发生之前试件蒙皮处于均匀纯剪切应变状态,后屈曲阶段试件发生了长桁-蒙皮脱粘破坏失效,长桁铺层数较多的试件SS-2具有更高的屈曲载荷和蒙皮局部屈曲应变。工程方法计算得到试件SS-1和SS-2的剪切屈曲应变相对于试验结果的误差分别为–14.9%和–9.2%。有限元弧长法分析得到试件SS-1的屈曲载荷和屈曲应变误差分别为1.9%和2.7%,且剪切屈曲模态与试验结果一致。弧长法对不同长桁铺层数的研究结果表明,长桁铺层较少时,壁板发生整体失稳的材料破坏,而长桁铺层数较多时,更容易发生长桁与蒙皮的脱粘失效。

     

  • 图  1  复合材料加筋壁板剪切稳定性试件

    Figure  1.  Composite stiffened panel for shear stability test

    图  2  复合材料加筋壁板应变片布置

    Figure  2.  Strain gauges distribution on composite stiffened panel

    图  3  复合材料加筋壁板剪切稳定性试验加载方式

    Figure  3.  Loading method for shear stability test of composite stiffened panels

    图  4  复合材料加筋壁板截面示意图

    Figure  4.  Cross section diagram of composite stiffened panel

    图  5  复合材料加筋壁板有限元模型

    Figure  5.  Finite element model of composite stiffened panel

    图  6  试件SS-1蒙皮工程剪切应变试验值曲线

    Figure  6.  Engineering shear strains of composite skins of specimen SS-1 by test

    图  7  试件SS-1蒙皮张量剪切应变和45°应变曲线

    Figure  7.  Tensorial shear strains and 45° strain curves of composite skins of specimen SS-1 by test

    图  8  复合材料加筋壁板试件SS-1破坏试验后形貌

    Figure  8.  Morphology of composite stiffened panel SS-1 after destructive test

    图  9  复合材料加筋壁板试件SS-2蒙皮中45°应变片应变曲线

    Figure  9.  Strain curves for 45° strain gauges on skins of composite stiffened panel SS-2 by test

    图  10  特征值法得到的复合材料加筋壁板SS-1的第一阶屈曲模态

    Figure  10.  The first buckling modal of composite stiffened panel SS-1 by eigenvalue method

    图  11  弧长法得到的复合材料加筋壁板SS-1蒙皮工程剪切应变随载荷变化曲线

    Figure  11.  Engineering shear strains change with force of skin for composite stiffened panel SS-1 by arc-length method

    图  12  760 kN时复合材料加筋壁板SS-1面外位移云图

    Figure  12.  Out of plane displacement contour plot of composite stiffened panel SS-1 at 760 kN

    图  13  760 kN时复合材料加筋壁板SS-1长桁与蒙皮脱粘云图

    Figure  13.  Stringer-skin debonding contour of composite stiffened panel SS-1 at 760 kN

    图  14  复合材料加筋壁板SS-1的试验应变及有限元应变曲线

    Figure  14.  Testing strain and numerical strain curves for composite stiffened panel SS-1

    图  15  复合材料加筋壁板模型SS-0的蒙皮数值模拟应变曲线

    Figure  15.  Numerical strain curves of skins for composite stiffened panel model SS-0

    图  16  剪切载荷下复合材料加筋壁板长桁与蒙皮脱粘云图

    Figure  16.  Stringer-skin debonding contour plots of composite stiffened panels under shear load

    表  1  X850碳纤维增强树脂复合材料单向带力学性能

    Table  1.   Mechanical properties of X850 carbon fiber reinforced polymer prepreg

    E11/MPaE22/MPaG12/MPaυ12
    158 0009 0004 1400.319
    Notes: E11—Elastic modulus in fibre direction; E22—Elastic modulus transverse to fibre direction; G12—Shear modulus; υ12—Poisson’s ratio.
    下载: 导出CSV

    表  2  复合材料加筋壁板铺层顺序

    Table  2.   Stacking sequences of composite stiffened panels

    RegionStacking sequence
    Skin[45/−45/0/45/−45/0/0/90]S
    L_left(SS-1)[–45/45/0/0/0/90/−45/0/45/90/0]
    L_left(SS-2)[–45/45/0/0/0/90/−45/0/45/45/0/−45/90/0]
    L_right(SS-1)[45/−45/0/0/0/90/45/0/−45/90/0]
    L_right(SS-2)[45/−45/0/0/0/90/45/0/−45/−45/0/45/90/0]
    Insert plys[45/−45/0/0]
    下载: 导出CSV

    表  3  复合材料加筋壁板模型SS-0和SS-3的长桁铺层

    Table  3.   Stacking sequences of stringers for composite stiffened panel models SS-0 and SS-3

    RegionStacking sequence
    L_left(SS-0)[−45/45/0/0/0/90/90/0]
    L_left(SS-3)[−45/45/0/0/0/90/−45/0/45/45/0/−45/90/0/0/90/0]
    L_right(SS-0)[45/−45/0/0/0/90/90/0]
    L_right(SS-3)[45/−45/0/0/0/90/45/0/−45/−45/0/45/90/0/0/90/0]
    下载: 导出CSV

    表  4  屈曲载荷下复合材料加筋壁板SS-1蒙皮工程剪切应变试验值

    Table  4.   Engineering shear strain of skin by test at buckling load of composite stiffened panel SS-1

    GaugeShear strain ${\gamma _{\rm{e}}}$/10−3Avg. shear strain/10−3Error/%
    4-6−3.850−3.6675.0
    7-9−3.565−2.8
    10-12−3.7632.6
    13-15−3.387−7.6
    16-18−3.6870.5
    19-21−3.6880.6
    22-24−3.7311.7
    下载: 导出CSV

    表  5  屈曲载荷下复合材料加筋壁板SS-2蒙皮工程剪切应变试验值

    Table  5.   Engineering shear strains of skin by test at buckling load of composite stiffened panel SS-2

    GaugeShear strain ${\gamma _{\rm{e}}}$/10−3Avg. shear strain/10−3Error/%
    4-6−3.737−3.761−0.6
    7-9−3.713−1.3
    10-12−3.8402.1
    13-15−3.600−4.2
    16-18−3.9254.4
    19-21−3.8141.5
    22-24−3.700−1.5
    下载: 导出CSV

    表  6  复合材料加筋壁板剪切屈曲应变工程分析结果

    Table  6.   Buckling strains of composite stiffened panels under shear load by engineering method

    Specimen${N_{{\rm{skin}}}}$/(N·mm–1)${\gamma _{\rm{e}}}$/10−3${\gamma _{\rm{e}}}$−test/10−3Error/%
    SS-1213−3.119−3.667−14.9
    SS-2233−3.416−3.761−9.2
    下载: 导出CSV

    表  7  复合材料加筋壁板SS-1剪切屈曲特征值及屈曲载荷

    Table  7.   Eigenvalues and buckling loads of composite stiffened panel SS-1 under shear by eigenvalue method

    Mode1234
    Eigenvalue2.552.622.782.84
    Bucking load/kN509524557568
    下载: 导出CSV

    表  8  弧长法得到的屈曲载荷为486 kN时复合材料加筋壁板SS-1蒙皮剪切屈曲应变

    Table  8.   Shear strains at buckling load of 486 kN of skins of composite stiffened panel SS-1 by arc-length method

    Gauge locationEngineering shear strain/10−3Avg. shear strain/10−3Error/%
    4-6−3.815−3.7671.3
    7-9−3.8201.4
    10-12−3.758−0.2
    13-15−3.509−6.9
    16-18−3.8772.9
    19-21−3.7950.7
    22-24−3 7960.8
    下载: 导出CSV
  • [1] 周雷敏, 孙沛. 波音787客机的复合材料国际化制造[J]. 高科技纤维与应用, 2013, 38(2):57-61. doi: 10.3969/j.issn.1007-9815.2013.02.011

    ZHOU Leiming, SUN Pei. Boeing 787 composites’ international manufacturing[J]. Hi-Tech Fiber & Application,2013,38(2):57-61(in Chinese). doi: 10.3969/j.issn.1007-9815.2013.02.011
    [2] 吴志恩. A350的复合材料构件制造[J]. 航空制造技术, 2013(13):32-35. doi: 10.3969/j.issn.1671-833X.2013.13.003

    WU Zhien. Manufacture of A350 composites structure[J]. Aeronautical Manufacturing Technology,2013(13):32-35(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.13.003
    [3] 赵稼祥. 碳纤维复合材料在民用航空上的应用[J]. 高科技纤维与应用, 2003, 28(3):1-4. doi: 10.3969/j.issn.1007-9815.2003.03.001

    ZHAO Jiaxiang. Application of carbon composite materials for civil aviation[J]. Hi-Tech Fiber & Application,2003,28(3):1-4(in Chinese). doi: 10.3969/j.issn.1007-9815.2003.03.001
    [4] QIAO P Z, HUO X P. Explicit local buckling analysis of rotationally restrained orthotropic plates under uniform shear[J]. Composite Structures,2011,93(11):2785-2794. doi: 10.1016/j.compstruct.2011.05.026
    [5] KUMAR D, SINGH S B. Effects of flexural boundary conditions on failure and stability of composite laminate with cutouts under combined in-plane loads[J]. Composites Part B: Engineering,2013,45(1):657-665. doi: 10.1016/j.compositesb.2012.08.016
    [6] KUMAR D, SINGH S B. Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads[J]. Composites Part B: Engineering,2012,43(2):142-149. doi: 10.1016/j.compositesb.2011.09.005
    [7] MITTELSTEDT C, ERDMANN H, SCHROEDER K. Postbuckling of imperfect rectangular composite plate under inplane shear closed-form approximate solution[J]. Archive of Applied Mechanics,2011,81(10):1409-1426. doi: 10.1007/s00419-010-0491-y
    [8] 万玉敏, 张发, 刘长喜, 等. 飞机典型薄壁复合材料夹层结构整体屈曲[J]. 复合材料学报, 2018, 35(8):2235-2245.

    WAN Yumin, ZHANG Fa, LIU Changxi, et al. Overall buckling of typical thin-wall sandwich composite applied on the aircraft[J]. Acta Materiae Compositae Sinica,2018,35(8):2235-2245(in Chinese).
    [9] 刘毅, 聂坤, 戴瑛. 任意铺层复合材料加筋板屈曲/后屈曲行为的解析解[J]. 南京航空航天大学学报, 2018, 50(1):1-10.

    LIU Yi, NIE Kun, DAI Ying. Analytical solution for buckling and postbuckling behavior of stiffened arbitrary laminated composite panels[J]. Journal of Nanjing University of Aeronautics & Astronautic,2018,50(1):1-10(in Chinese).
    [10] 谭翔飞, 何宇廷, 冯宇, 等. 航空复合材料加筋板剪切稳定性及后屈曲承载性能[J]. 复合材料学报, 2018, 35(2):320-331.

    TAN Xiangfei, HE Yuting, FENG Yu, et al. Stability and post-buckling carrying capability of aeronautic composite stiffened panel under shear loading[J]. Acta Materiae Compositae Sinica,2018,35(2):320-331(in Chinese).
    [11] NDOGMO J, MENSINGER M, BOTH I. Buckling behavior of stiffened plate under biaxial compression and shear[J]. Procedia Engineering,2016,156:272-279.
    [12] 王新年, 赵伟, 吴师, 等. 复合材料平尾加筋壁板剪切稳定性[J]. 南京航空航天大学学报, 2017, 49(6):812-819.

    WANG Xinnian, ZHAO Wei, WU Shi, et al. Buckling behavior of stiffened composite tail panel subjected to shear loading[J]. Journal of Nanjing University of Aeronautics & Astronautic,2017,49(6):812-819(in Chinese).
    [13] 何吕龙, 尚柏林, 常飞, 等. 筋条参数对复合材料加筋壁板剪切承载能力的影响[J]. 机械工程材料, 2015, 39(9):49-52. doi: 10.11973/jxgccl201509011

    HE Lvlong, SHANG Bolin, CHANG Fei, et al. Effects of stiffener parameter on shear carrying capacity of composite stiffened wall panel[J]. Materials for Mechanical Engineering,2015,39(9):49-52(in Chinese). doi: 10.11973/jxgccl201509011
    [14] MALLELA U K, UPADHYAY A. Buckling of laminated composite stiffened panels subjected to in-plane shear: A parametric study[J]. Thin-Walled Structures,2006,44(3):354-361. doi: 10.1016/j.tws.2006.03.008
    [15] 邵青, 何宇廷. 复合材料加筋板剪切稳定性研究[J]. 航空精密制造技术, 2010, 46(6):34, 46-48.

    SHAO Qing, HE Yuting. Study on shear stability performance of composite stiffened panel[J]. Aviation Precision Manufacturing Technology,2010,46(6):34, 46-48(in Chinese).
    [16] RAJU G, WU Z M, WEAVER P M. Buckling and post-buckling of variable angle tow composite plates under in-plane shear loading[J]. International Journal of Solids and Structures,2015,58(1):270-287.
    [17] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4):866-875.

    GU Jiefei, CHEN Puhui, KONG Bin, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica,2018,35(4):866-875(in Chinese).
    [18] VILLANI A D P G, DONADON M V, ARBELO M A, et al. The postbuckling behavior of adhesively bonded stiffened panels[J]. Aerospace Science and Technology,2015(46):30-41.
    [19] 陈静, 沈安澜. 复合材料开孔薄壁加筋板剪切屈曲及后屈曲研究[J]. 直升机技术, 2018(1):13-19. doi: 10.3969/j.issn.1673-1220.2018.01.003

    CHEN Jing, SHEN Anlan. Buckling and post-buckling of composite shear stiffened plates with cutout[J]. Helicopter Technique,2018(1):13-19(in Chinese). doi: 10.3969/j.issn.1673-1220.2018.01.003
    [20] 张国凡, 孙侠生, 孙中雷. 复合材料加筋壁板剪切破坏试验与后屈曲分析[J]. 机械科学与技术, 2016, 35(8):1280-1285.

    ZHANG Guofan, SUN Xiasheng, SUN Zhonglei. Failure test and post-buckling analysis of composite stiffened panels under shear load[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(8):1280-1285(in Chinese).
    [21] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002.

    Chinese Institute of Aeronautics. Analysis guide for composite structural stability[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
    [22] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2007,74(10):1665-1682. doi: 10.1016/j.engfracmech.2006.08.025
    [23] HASHIN Z, ROTEM A. A fatigue criterion for fiber-reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  252
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 录用日期:  2019-09-24
  • 网络出版日期:  2019-10-11
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回