留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响

史俊伟 刘松平 荀国立 杨刚

史俊伟, 刘松平, 荀国立, 等. 孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响[J]. 复合材料学报, 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001
引用本文: 史俊伟, 刘松平, 荀国立, 等. 孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响[J]. 复合材料学报, 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001
SHI Junwei, LIU Songping, XUN Guoli, et al. Effects of voids on ultrasonic attenuation coefficient and compressive properties of carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001
Citation: SHI Junwei, LIU Songping, XUN Guoli, et al. Effects of voids on ultrasonic attenuation coefficient and compressive properties of carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1295-1311. doi: 10.13801/j.cnki.fhclxb.20191008.001

孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响

doi: 10.13801/j.cnki.fhclxb.20191008.001
基金项目: 国家自然科学基金(61571409;60727001)
详细信息
    通讯作者:

    刘松平,博士,研究员,博士生导师,研究方向为复合材料及焊接无损检测与评估 E-mail:liusping2014@163.com

  • 中图分类号: TB332

Effects of voids on ultrasonic attenuation coefficient and compressive properties of carbon fiber/epoxy resin composite

  • 摘要: 孔隙对碳纤维增强环氧树脂(CF/EP)复合材料的力学性能和破坏模式有显著的影响,因此需要建立准确的孔隙率无损检测评估方法,并基于所评估的孔隙率提高CF/EP复合材料压缩性能预测的可靠性。本文主要研究了孔隙对CF/EP复合材料的超声衰减系数和压缩性能的影响,通过降低固化压力至0.7~0.2 MPa和延长预浸料室温贮存时间至30~180天的方法,制备了不同孔隙率的CF/EP复合材料层压板,通过金相验证其孔隙率在0%~3.0%之间,孔隙类型主要为层中孔隙和层间孔隙。通过理论和试验的方法,基于超声反射法建立了孔隙率与超声衰减系数的关系曲线,由孔隙引起超声衰减系数为αv=1.08Pv2(Pv为孔隙率),与前人基于超声穿透法所得的超声衰减系数αv=0.61Pv2较好地符合2倍声程的关系。对不同孔隙率的CF/EP复合材料层压板进行压缩测试实验,特别考虑了贴片和加载方向对测试结果的影响。从细观角度研究了含孔隙的CF/EP复合材料层压板的压缩破坏模式。结果表明:CF/EP复合材料层压板的压缩强度随孔隙率增加而下降,孔隙率增加至2.5%时,压缩强度下降13.7%,孔隙细观特征影响压缩破坏的形式,主要原因是孔隙诱发微裂纹的萌生和扩展,削弱了纤维与树脂间的结合力并引发纤维微屈曲。

     

  • 图  1  IMA/M21 CF/EP复合材料单向带预浸料的标准固化曲线

    Figure  1.  Typical curing curves for IMA/M21 CF/EP composite unidirectional prepreg

    图  2  在水中检测CF/EP复合材料层压板时换能器信号的时域/频域波形

    Figure  2.  Transducer signal waveform from CF/EP composite laminate immersed in water

    图  3  由超声C-Scan检测结果的灰度分布确定典型孔隙率的取样区域

    Figure  3.  Sampling areas of typical void content determined by grey distribution of ultrasonic C-Scan results

    图  4  压缩试样取样示意图

    Figure  4.  Schematic of compressive sample preparation

    图  5  分别取样自延长贮存时间(a)和降低固化压力(b)所制备的CF/EP复合材料层压板孔隙形貌

    Figure  5.  Metallographic images of CF/EP composite laminates with voids, respectively obtained by increasing prepreg out storage time (a) and reducing autoclave pressure (b)

    图  6  分别取样自延长贮存时间(a)和降低固化压力(b)所制备的CF/EP复合材料层压板的超声成像

    Figure  6.  Ultrasonic C-Scan images of CF/EP composite laminates with voids, respectively obtained by increasing prepreg out storage time (a) and reducing autoclave pressure (b)

    图  7  超声反射法几何示意图

    Figure  7.  Geometry and notation for ultrasonic reflection test

    图  8  沿CF/EP复合材料层压板法线方向传播的纵波声速

    Figure  8.  Velocity of longitudinal waves propagating along the normal direction of CF/EP composite laminate

    图  9  零孔隙率的CF/EP复合材料层压板中衰减与厚度的关系

    Figure  9.  Attenuation of ultrasound by CF/EP composite laminates stepwise increasing with thickness in zero void content laminates

    图  10  CF/EP复合材料层压板超声反射法中衰减系数αv与孔隙率Pv的关系

    Figure  10.  Attenuation of ultrasound plotted against the void content in a regular relationship for CF/EP composite laminates

    图  11  贴片和非贴片条件下CF/EP复合材料层压板孔隙率对压缩强度的影响

    Figure  11.  Effects of void content on compression strength of CF/EP composite laminates in terms of tabbed and un-tabbed

    图  12  CF/EP复合材料层压板的压缩失效模式对比

    Figure  12.  Comparison of the compressive failure modes in CF/EP composite laminates

    图  13  CF/EP复合材料层压板的压缩强度与孔隙率的关系

    Figure  13.  Compression strength as a function of void content in CF/EP composite laminates

    图  14  CF/EP复合材料层压板中孔隙的位置和微观形貌(黑色箭头:层中孔隙;红色箭头:层间孔隙)

    Figure  14.  Positions and morphologies of voids in CF/EP composite laminates (Blank arrows: Intralaminar voids; Red arrows: Interlaminar voids)

    图  15  CF/EP复合材料层压板中孔隙周边的微裂纹

    Figure  15.  Microcrack initiation and propagation with a void inclusion in CF/EP composite laminates

    图  16  含孔隙的CF/EP复合材料层压板的纵向压缩破坏模式

    Figure  16.  Longitudinal compression failure modes in void-containing CF/EP composite laminates

    ((a) Tension-compression mode fiber bucking; (b) Shear mode fiber bucking; (c) Shear fracture; (d) Interlaminar lateral-cracking delamination; (e) Intralaminar lateral-cracking delamination)

    图  17  含孔隙的CF/EP复合材料层压板中的树脂基体破坏

    Figure  17.  Resin fracture in void-containing CF/EP composite laminates

    表  1  碳纤维/环氧树脂(CF/EP)单向带预浸料的力学性能

    Table  1.   Mechanical properties of cured carbon fiber/epoxy resin (CF/EP) unidirectional prepreg

    Mechanical propertiesStrength/MPaModulus/GPa
    0°-tension 3 050 178
    0°-compression 1 500 146
    90°-compression 13.7
    In-plane shear 94 5.2
    Interlaminar shear 97
    Note: Properties are experimentally characterized at 23℃ by Hexcel.
    下载: 导出CSV

    表  2  CF/EP复合材料层压板上典型区域的孔隙含量

    Table  2.   Void content of typical areas in CF/EP composite laminates

    Sampling area No.Determined by ultrasonic test/%Determined by light microscopy/%
    1 0−0.5 0
    2* 0.5−1.0 0.68
    3 1.0−1.5 1.05
    4 1.0−1.5 1.37
    5* 1.5−2.0 1.52
    6 1.5−2.0 1.75
    7* 1.5−2.0 1.75
    8 2.0−2.5 2.33
    9* 2.5−3.0 2.76
    Note: Equal-grey-distribution areas indicated by superscripts * are not large enough for compressive test sampling.
    下载: 导出CSV

    表  3  水和CF/EP复合材料的声学常数

    Table  3.   Acoustic constants of water and CF/EP composite

    Densityρ/
    (kg·m−3)
    Velocity c/
    (m·s−1)
    Acoustic impedance Z/
    (103kg·m−2·s−1)
    Water[35] 998 1 483 1 480
    CF/EP 1 580 2 940 4 708
    下载: 导出CSV

    表  4  不同厚度的零孔隙率CF/EP复合材料层压板中所测得的衰减

    Table  4.   Experimental attenuation of ultrasound by zero void content CF/EP composite laminates with varying thicknesses

    Thickness
    h/mm
    Voltage
    Vf/V
    Voltage
    Vb/V
    Mean attenuation
    Al/dB
    Standard deviation
    S1/dB
    2.06 160.39 130.58 1.79 0.56
    3.90 158.75 70.60 7.04 0.26
    5.02 156.33 55.65 8.97 0.06
    7.02 159.42 34.22 13.36 0.30
    9.02 155.55 25.75 15.62 0.24
    12.68 159.88 17.72 19.11 0.20
    下载: 导出CSV

    表  5  不同孔隙率的CF/EP复合材料层压板所测得的声波衰减

    Table  5.   Experimental attenuation of ultrasound by CF/EP composite laminates with varying void contents

    Area No.Void content
    Pv/%
    Mean attenuation
    Atotal/dB
    Standard deviation
    Stotal/dB
    Attenuation coefficient
    αv/(dB·mm−1)
    1 0 7.04 0.26 −0.23*
    2a 0.68 10.00 1.13 0.51
    2b 0.68 10.00 1.44 0.51
    3a 1.05 12.50 0.82 1.14
    3b 1.05 12.76 1.72 1.20
    4 1.37 15.66 3.25 1.93
    5 1.52 17.50 4.23 2.39
    6a 1.75 18.78 0.62 2.71
    6b 1.75 19.13 0.75 2.79
    7 1.75 20.95 2.93 3.25
    8a 2.33 31.46 2.00 5.88
    8b 2.33 35.61 1.97 6.91
    9a 2.76 38.01 1.05 7.52
    9b 2.76 41.61 2.16 8.41
    Note: If the equal-grey-distribution area is large enough, ultrasonic test will be carried out left and right to the metallographic sampling area, indicated by subscripts a and b respectively.
    下载: 导出CSV

    表  6  不同孔隙率下CF/EP复合材料层压板的压缩强度

    Table  6.   Compression strengths of CF/EP composite laminates at various void contents

    Sample typeVoid content Pv/%Compression strength $\bar \sigma $/MPaStandard deviation Sn−1/MPaCoefficient of variation CV/%
    0° un-tabbed 0 677 60 8.9
    1.05 642 54 8.5
    1.37 644 24 3.7
    1.75 632 26 4.1
    2.33 580 31 5.3
    90° un-tabbed 0 673 19 2.9
    1.05 632 54 8.6
    1.37 616 45 7.3
    1.75 599 38 6.3
    2.33 505 35 6.9
    0° tabbed 0 737 52 7.1
    1.05 699 54 7.8
    1.37 685 34 5.0
    1.75 678 46 6.9
    2.33 636 14 2.2
    90° tabbed 0 664 21 3.1
    1.05 656 39 5.9
    1.37 625 64 10.2
    1.75 614 16 2.6
    2.33 573 40 7.0
    下载: 导出CSV
  • [1] SOUTIS C. Measurement of the static compressive strength of carbon fibre/epoxy lamiantes[J]. Composites Science and Technology,1991,42(4):373-392. doi: 10.1016/0266-3538(91)90064-V
    [2] 林博. 复合材料机身壁板结构设计方法研究[D]. 南京: 南京航空航天大学, 2012.

    LIN Bo. A Research on structure design of composite fuselage panel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [3] HUANG H, TALREJA R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites[J]. Composites Science and Technology,2005,65(13):1964-1981. doi: 10.1016/j.compscitech.2005.02.019
    [4] ABDELAL N R. Effect of voids on delamination behavior under static and fatigue mode I and mode Ⅱ[D]. Dayton: University of Dayton, 2013.
    [5] 朱洪艳. 孔隙对碳/环氧复合材料层压板性能的影响与评价研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    ZHU Hongyan. Research on effect and evaluation of voids on properties of carbon/epoxy composite laminates[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [6] ASHOURI V D, GONZÁLEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97:46-54. doi: 10.1016/j.compscitech.2014.04.004
    [7] GRUFMAN C, ELLYIN F. Determining a representative volume element capturing the morphology of fibre reinforced polymer composites[J]. Composites Science and Technology,2007,67(3-4):766-775. doi: 10.1016/j.compscitech.2006.04.004
    [8] LO K H, CHIM S M. Compressive strength of unidirectional composites[J]. Journal of Reinforced Plastics and Composites,1992,11(8):838-896. doi: 10.1177/073168449201100801
    [9] LEE J, SOUTIS C. Thickness effect on the compressive strength of T800/924C carbon fibre-epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2005,36(2):213-227. doi: 10.1016/S1359-835X(04)00158-7
    [10] GHOLIZADEH S. A review of non-destructive testing methods of composite materials[J]. Procedia Structural Integrity,2016,1:50-57. doi: 10.1016/j.prostr.2016.02.008
    [11] LIN L, ZHANG X, CHEN J, et al. A novel random void model and its application in predicting void content of compo-sites based on ultrasonic attenuation coefficient[J]. Applied Physics A,2011,103(4):1153-1157. doi: 10.1007/s00339-010-6061-x
    [12] 陆铭慧, 刘磨, 张雪松, 等. RTM玻璃纤维/E51环氧树脂复合材料孔隙含量对超声特征参数的影响[J]. 复合材料学报, 2018, 35(2):291-297.

    LU Minghui, LIU Mo, ZHANG Xuesong, et al. Effect of void content on ultrasonic characteristic parameters of RTM glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(2):291-297(in Chinese).
    [13] HALE J M, ASHTON J N. Ultrasonic attenuation in voided fibre-reinforced plastics[J]. NDT International,1988,21(5):321-326.
    [14] STONE D E W, CLARKE B. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics[J]. Non-Destructive Testing,1975,8(3):137-145. doi: 10.1016/0029-1021(75)90023-7
    [15] DANIEL I M, WOOH S C, KOMSKY I. Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements[J]. Journal of Nondestructive Evaluation,1992,11(1):1-8. doi: 10.1007/BF00566012
    [16] 马雯, 刘福顺. 玻璃纤维复合材料孔隙率对超声衰减系数及力学性能的影响[J]. 复合材料学报, 2012, 29(5):69-75.

    MA Wen, LIU Fushun. Effect of porosity on the attenuation coefficient and mechanical properties of glass fiber reinforced composites[J]. Acta Materiae Compositae Sinica,2012,29(5):69-75(in Chinese).
    [17] 陆铭慧, 张雪松, 郑善朴, 等. 基于超声的碳纤维复合材料孔隙率表征方法对比研究[J]. 玻璃钢/复合材料, 2018, 45(7):42-48. doi: 10.3969/j.issn.1003-0999.2018.07.007

    LU Minghui, ZHANG Xuesong, ZHENG Shanpu, et al. The comparative study of porosity characterization method of carbon fiber composite by ultrasound[J]. Fiber Reinforced Plastics/Composites,2018,45(7):42-48(in Chinese). doi: 10.3969/j.issn.1003-0999.2018.07.007
    [18] ISHII Y, BIWA S, KURAISHI A. Influence of porosity on ultrasonic wave velocity, attenuation and interlaminar interface echoes in composite laminates: Finite element simulations and measurements[J]. Composite Structures,2016,152:645-653. doi: 10.1016/j.compstruct.2016.05.054
    [19] HSU D K, JEONG H. Ultrasonic velocity change and dispersion due to porosity in composite laminates[J]. Review of Progress in Quantitative Non-destructive Evaluation,1989,8(1):1567-1573.
    [20] KIM K B, HSU D K, BARNARD D J. Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal[J]. NDT & E International,2013(56):10-16.
    [21] PARK J W, KIM D J, IM K H, et al. Ultrasonic influence of porosity level on CFRP composite laminates using rayleigh probe waves[J]. Acta Mechanica Solida Sinica,2008,21(4):298-307.
    [22] 林莉, 罗明, 郭广平, 等. 碳纤维复合材料孔隙率超声声阻抗法检测[J]. 复合材料学报, 2009, 26(3):105-110. doi: 10.3321/j.issn:1000-3851.2009.03.019

    LIN Li, LUO Ming, GUO Guangping, et al. Ultrasonic determination of carbon fiber composite porosity using acoustic impedance[J]. Acta Materiae Compositae Sinica,2009,26(3):105-110(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.03.019
    [23] 周晓军, 莫锦秋, 游红武. 碳纤维复合材料分布孔隙率的超声衰减检测方法[J]. 复合材料学报, 1997, 14(3):108-115.

    ZHOU Xiaojun, MO Jinqiu, YOU Hongwu. Ultrasonic attenuation testing method for NDE of void content based on theoretical model and experiment calibration[J]. Acta Materiae Compositae Sinica,1997,14(3):108-115(in Chinese).
    [24] 于雅琳, 叶金蕊, 刘奎, 等. 含孔隙复合材料超声衰减分析的细观有限元模型[J]. 复合材料学报, 2014, 31(1):171-178. doi: 10.3969/j.issn.1000-3851.2014.01.025

    YU Yalin, YE Jinrui, LIU Kui, et al. A mesoscale ultrasonic attenuation finite element model of void-containing composite[J]. Acta Materiae Compositae Sinica,2014,31(1):171-178(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.025
    [25] 丁珊珊, 金士杰, 何晓晨, 等. 基于仿真方法的CFRP复合材料孔隙率与超声衰减系数的关系[J]. 复合材料学报, 2018, 35(1):89-94.

    DING Shanshan, JIN Shijie, HE Xiaochen, et al. Relationship between porosity and ultrasonic attenuation coefficient of CFRP based on simulation method[J]. Acta Materiae Compositae Sinica,2018,35(1):89-94(in Chinese).
    [26] LIN L, CHEN J, ZHANG X, et al. A novel 2-D random void model and its application in ultrasonically determined void content for composite materials[J]. NDT & E International,2011,44(3):254-260.
    [27] KOUSHYAR H, ALAVI-SOLTANI S, MINAIE B, et al. Effects of variation in autoclave pressure, temperature, and vacuum-application time on porosity and mechanical properties of a carbon fiber/epoxy composite[J]. Journal of Composite Materials,2012,46(16):1985-2004. doi: 10.1177/0021998311429618
    [28] 汪赫男, 张佐光, 顾轶卓, 等. 环氧复合材料层板热压成型孔隙缺陷影响因素[J]. 复合材料学报, 2007, 24(5):55-60. doi: 10.3321/j.issn:1000-3851.2007.05.011

    WANG He'nan, ZHANG Zuoguang, GU Yizhuo, et al. Effects of different factors on the void defect in epoxy composite laminates in hot pressing process[J]. Acta Materiae Compositae Sinica,2007,24(5):55-60(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.05.011
    [29] 荀国立, 邱启艳, 史俊伟, 等. 热压罐固化环氧基复合材料孔隙形成研究[J]. 航空制造技术, 2014(15):110-111, 115. doi: 10.3969/j.issn.1671-833X.2014.15.024

    XUN Guoli, QIU Qiyan, SHI Junwei, et al. Study on formation of voids in autoclave curing epoxy matrix composites[J]. Aeronautical Manufacturing Technology,2014(15):110-111, 115(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.024
    [30] T G 古托夫斯基. 先进复合材料制造技术[M]. 北京: 化学工业出版社,2004.

    GUTOWSKI T G. Adavanced composites manufacturing[M]. Beijing: Chemical Industry Press, 2004(in Chinese).
    [31] OLIVIER P, COTTU J P, FERRET B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates[J]. Composites,1995,26(7):509-515. doi: 10.1016/0010-4361(95)96808-J
    [32] 中国国家标准化管理委员会. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法: GB/T 3365—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Carbon fiber reinforced plastics-Detemination of void content and fiber volume content: GB/T 3365—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [33] ASTM International. Standard text method for compressive properties of polymer matrix composite materals using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M-14[S]. West Conshohocken: ASTM International, 2014.
    [34] KARDOS J L, DUDUKOVIĆ M P, DAVE R. Void growth and resin transport during processing of thermosetting matrix composites[M]. Heidelberg: Springer, 1986.
    [35] 杜功焕,龚秀芬,朱哲民. 声学基础[M]. 南京:南京大学出版社,2001.

    DU Gonghuan, GONG Xiufen, ZHU Zhemin. Fundamentals of acoustics[M]. Nanjing: Nanjing University Press, 2001(in Chinese).
    [36] LIEBIG W V, VIETS C, SCHULTE K, et al. Influence of voids on the compressive failure behaviour of fibre-reinforced composites[J]. Composites Science and Technology,2015,117:225-233. doi: 10.1016/j.compscitech.2015.06.020
    [37] SMITH R A, BIRT E A. A review of NDE methods for porosity measurement in fibre-reinforced polymer composites[J]. Or Insight,2004,46(11):681-686.
    [38] 矫桂琼, 贾普荣. 复合材料力学[M]. 西安: 西北工业大学出版社,2008.

    JIAO Guiqiong, JIA Purong. Mechanics of composites[M]. Xi’an: Northwestern Polytechnical University Press, 2008(in Chinese).
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  1417
  • HTML全文浏览量:  232
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 录用日期:  2019-09-02
  • 网络出版日期:  2019-10-09
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回