留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩-碳纤维/矿渣混凝土力学性能正交试验

黄鑫 姜景山 孙天洋 蒋威

黄鑫, 姜景山, 孙天洋, 等. 玄武岩-碳纤维/矿渣混凝土力学性能正交试验[J]. 复合材料学报, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
引用本文: 黄鑫, 姜景山, 孙天洋, 等. 玄武岩-碳纤维/矿渣混凝土力学性能正交试验[J]. 复合材料学报, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001
Citation: HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1743-1753. doi: 10.13801/j.cnki.fhclxb.20190930.001

玄武岩-碳纤维/矿渣混凝土力学性能正交试验

doi: 10.13801/j.cnki.fhclxb.20190930.001
基金项目: 国家自然科学基金面上项目(51778282;51678292);江苏省实践创新训练计划省级重点项目(201911276016Z);江苏省实践创新训练计划省级校企合作项目(201911276094H);南京工程学院2019挑战杯培育项目(TP20190007)
详细信息
    通讯作者:

    姜景山,博士,副教授,研究方向为土木工程材料力学性质 E-mail:j.s.jiang@163.com

  • 中图分类号: TB332;TU528.572

Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete

  • 摘要: 应用正交试验法开展了16组玄武岩-碳纤维(BF-CF)/矿渣混凝土和1组C40级基准混凝土的塌落度、立方体抗压强度和劈裂抗拉强度试验,研究了BF、CF和矿渣三种因素对BF-CF/矿渣混凝土力学性能的影响。结果表明:BF-CF/矿渣混凝土立方体抗压强度和劈裂抗拉强度均高于C40基准混凝土,立方体抗压强度最大提高了21.0%,劈裂抗拉强度最大提高了35.3%。BF和CF的掺入均会减小混凝土的塌落度,BF对于塌落度的减小更加明显,BF对塌落度的最大降幅为67.1%;矿渣代砂率是影响BF-CF/矿渣混凝土立方体抗压强度的显著因素,随着矿渣代砂率的增大,立方体抗压强度先增大后减小,矿渣对立方体抗压强度的最大提高幅度为7.6%;BF是影响BF-CF/矿渣混凝土劈裂抗拉强度的显著因素,劈裂抗拉强度随BF体积率的增加而增大,BF对劈裂抗拉强度的最大增幅为12.0%,CF对劈裂抗拉强度的提升不明显。对正交试验的结果进行回归分析得出BF-CF/矿渣混凝土立方体抗压强度和劈裂抗拉强度预测模型,模型精度较高。

     

  • 图  1  玄武岩纤维(BF)和碳纤维(CF)的外观

    Figure  1.  Appearances of basalt fiber(BF) and carbon fiber(CF)

    图  2  C40基准混凝土和BF-CF/矿渣混凝土立方体抗压试验破坏形态

    Figure  2.  Failure forms of cube compressive test for C40 reference concrete and BF-CF/slag concrete

    图  3  C40基准混凝土和BF-CF/矿渣混凝土劈裂抗拉试验破坏形态

    Figure  3.  Failure forms of splitting tensile test for C40 reference concrete and BF-CF/slag concrete

    图  4  BF体积分数(Vb)、CF体积分数(Vc)和矿渣代砂率(Rs)对BF-CF/矿渣混凝土塌落度、立方体抗压强度、劈裂抗拉强度和拉压比的影响

    Figure  4.  Effects of volume fraction of BF(Vb), volume fraction of CF(Vc) and mass ratio of slag replacing for sand(Rs) on slump, cube compressive strength, splitting tensile strength and tension-compression ratio of BF-CF/slag concrete

    图  5  BF-CF/矿渣混凝土立方体抗压强度和劈裂抗拉强度预测值与实测值对比

    Figure  5.  Comparison of predicted values with measured values of cube compressive strength and splitting tensile strength of BF-CF/slag concrete

    表  1  BF和CF主要性能参数

    Table  1.   Main performance parameters of BF and CF

    FiberBFCF
    Density/(g·cm3) 2.8 1.76
    Tensile strength/MPa 4 000 3 800
    Modulus of elasticity/GPa 100 230
    Monofilament diameter/μm 12 8
    Length/mm 12 6
    Elongation at break/% 3.1 1.5
    下载: 导出CSV

    表  2  矿渣的主要成分及性能

    Table  2.   Chemical composition and property of copper slag wt%

    Fe2O3SiO2Al2O3CaOCu2OP2O5Burning loss
    41.5294.270.53
    下载: 导出CSV

    表  3  矿渣和天然石英砂的性能指标

    Table  3.   Performance indexes of copper slag and natural fine aggregate

    Test itemFineness modulusApparent density/(kg·m–3)Bulk density/(kg·m3)
    Copper slag3.32 6501 900
    Natural fine aggregate1.43 6001 750
    下载: 导出CSV

    表  4  细骨料细度模数

    Table  4.   Fineness modulus of fine aggregate

    Rs/wt%020406080
    Fineness modulus1.402.172.362.622.94
    Note: Rs—Mass fraction of slag replacing for sand.
    下载: 导出CSV

    表  5  BF-CF/矿渣混凝土正交试验因素和水平

    Table  5.   Factors and levels of orthogonal test of BF-CF/slag concrete

    LevelFactor
    Vb(A)/vol%Vc(B)/vol%Rs(C)/wt%Blank column(D)Blank column(E)
    1 0.1 0.1 20 1 1
    2 0.2 0.2 40 2 2
    3 0.3 0.3 60 3 3
    4 0.4 0.4 80 4 4
    Notes:Vb—volume fraction of BF in concrete, Vc—Volume fraction of CF in concrete.
    下载: 导出CSV

    表  6  C40基准混凝土配合比

    Table  6.   Proportion of C40 reference concrete kg·m−3

    TypeCementFly ashSandStoneWaterWater reducer
    S-1 405 71 613 1 242 162 5.24
    Notes:S—Reference concrete.
    下载: 导出CSV

    表  7  C40基准混凝土和BF-CF/矿渣混凝土塌落度和强度试验结果

    Table  7.   Test results of slump and strength of C40 reference concrete and BF-CF/slag concrete

    Material typeFactorConcrete slump/mmCube compressive
    strength fcu/MPa
    Splitting tensile
    strength fts/MPa
    Tension-compression
    ratio (fts/fcu)
    A/
    vol%
    B/
    vol%
    C/
    wt%
    S-1 0 0 0 178 44.3 3.31 0.074718
    ZJ-1 0.1 0.1 20 168 47.2 3.70 0.078390
    ZJ-2 0.1 0.2 40 143 48.7 3.79 0.077823
    ZJ-3 0.1 0.3 60 125 53.6 4.18 0.077985
    ZJ-4 0.1 0.4 80 81 47.8 4.17 0.087238
    ZJ-5 0.2 0.1 40 138 48.1 4.11 0.085447
    ZJ-6 0.2 0.2 20 120 47.9 3.99 0.083299
    ZJ-7 0.2 0.3 80 78 48.0 4.24 0.088333
    ZJ-8 0.2 0.4 60 93 50.4 4.30 0.085317
    ZJ-9 0.3 0.1 60 107 51.8 4.40 0.084942
    ZJ-10 0.3 0.2 20 91 47.3 4.26 0.090063
    ZJ-11 0.3 0.3 80 76 50.1 4.24 0.084631
    ZJ-12 0.3 0.4 40 65 52.2 4.38 0.083908
    ZJ-13 0.4 0.1 80 73 45.5 4.41 0.096923
    ZJ-14 0.4 0.2 60 41 50.4 4.45 0.088294
    ZJ-15 0.4 0.3 40 33 51.0 4.48 0.087843
    ZJ-16 0.4 0.4 20 23 49.8 4.33 0.086948
    Notes: S—Reference concrete; ZJ—BF-CF/slag concrete.
    下载: 导出CSV

    表  8  BF-CF/矿渣混凝土塌落度和强度的极差分析结果

    Table  8.   Range analysis results of slump and strength of BF-CF/slag concrete

    Examination indexRange calculationBFCFSlagBlank column(D)Blank column (E)
    Concrete slump/mm Bi1 129.25 121.5 100.5 88.00 96.25
    Bi2 107.25 98.75 94.75 85.25 95.75
    Bi3 84.75 78.00 91.5 96.25 84.00
    Bi4 42.50 65.50 77.00 94.25 87.75
    Ri 86.75 56.00 23.50 11.00 12.25
    Cube compressive strength fcu/MPa Bi1 48.8 48.2 48.6 49.6 49.0
    Bi2 49.0 48.8 49.5 49.6 49.8
    Bi3 50.5 51.0 52.3 48.7 49.1
    Bi4 49.4 50.4 47.0 49.7 49.6
    Ri 1.7 2.8 5.3 1.0 0.8
    Splitting tensile strength fts/MPa Bi1 3.96 4.16 4.07 4.19 4.19
    Bi2 4.16 4.12 4.19 4.26 4.24
    Bi3 4.32 4.29 4.33 4.19 4.24
    Bi4 4.42 4.30 4.27 4.22 4.19
    Ri 0.46 0.18 0.27 0.07 0.05
    Tension-compression ratio (fts/fcu) Bi1 0.080359 0.086425 0.088317 0.084731 0.085403
    Bi2 0.085990 0.084870 0.083755 0.085831 0.085529
    Bi3 0.085886 0.084698 0.084135 0.086174 0.086402
    Bi4 0.090002 0.085853 0.090640 0.085111 0.084512
    Ri 0.009643 0.001727 0.006885 0.001442 0.001891
    Notes: Bij—Average of the test results of factor i at level j; Ri—Range value of factor i.
    下载: 导出CSV

    表  9  BF-CF/矿渣混凝土塌落度和强度的方差分析检验

    Table  9.   Variance analysis of slump and strength of BF-CF/slag concrete

    Examination indexSource of variationSSDFMSFSignificance
    Concrete slump/mm BF 16 473.688 3 5 491.229 40.576 **
    CF 6 593.062 3 2 197.687 16.239 *
    Slag 557.062 3 185.687 1.372
    Error 759.375 6 126.563
    Cube compressive strength fcu/MPa BF 6.372 3 2.124 2.848
    CF 17.142 3 5.714 7.661 *
    Slag 41.848 3 13.949 18.703 **
    Error 4.475 6 0.746
    Splitting tensile
    strength fts/MPa
    BF 0.480 3 0.160 37.765 **
    CF 0.094 3 0.031 7.376 *
    Slag 0.160 3 0.053 12.566 *
    Error 0.025 6 0.004
    Tension-compression ratio (fts/fcu) BF 0 3 0.0000624710 30.272 **
    CF 0.0000080623 3 0.0000026873 1.302
    Slag 0 3 0.0000481120 23.313 *
    Error 0.0000123852 6 0.0000020643
    Notes: SS—Sum of squares; DF—Degree of freedom; MS—Mean square; FF-value; **—Highly marked; *—Marked; −—No marked; F0.05(3,6)=4.76.
    下载: 导出CSV

    表  10  其他文献[27-31]混凝土强度预测结果

    Table  10.   Strength prediction results of concrete in other research[27-31] results

    LiteratureNumbersVb/
    vol%
    Vc/
    vol%
    Rs/
    wt%
    Cube compressive strength /MPaSplitting tensile strength /MPa
    Actual measurementPredictionRelative error/%Actual measurementPredictionRelative error/%
    Literature[27](C40) 1 0.1 46.20 41.73 −9.68 3.30 3.28 −0.51
    2 0.15 44.70 41.80 −6.50 3.74 3.36 −10.16
    3 0.2 43.70 41.86 −4.21 4.01 3.44 −14.30
    Literature[28](C30) 4 0.05 39.50 40.57 2.70 3.75 3.72 −0.89
    5 0.1 37.80 40.63 7.49 3.86 3.79 −1.73
    6 0.2 35.10 40.76 16.13 4.00 3.95 −1.34
    Literature[29](C30) 7 0.1 43.20 39.23 −9.19 3.76 3.62 −3.64
    Literature[29](C40) 8 0.1 54.80 49.83 −9.07 4.43 4.15 −6.25
    9 0.2 51.60 49.96 −3.18 3.69 4.31 −8.18
    Literature[30](C40) 10 30 48.80 52.31 7.20 3.73 4.00 7.34
    11 50 43.80 51.99 18.69 3.59 4.08 13.64
    12 0.1 57.41 53.58 −6.67 4.15 3.95 −4.86
    13 0.2 60.26 54.36 −9.79 4.66 4.01 −14.02
    14 0.3 68.44 55.14 −19.43 5.01 4.06 −18.87
    15 0.1 30 51.76 53.58 −3.52 3.95 4.06 2.83
    16 0.2 30 54.30 54.36 0.11 4.46 4.12 −7.65
    17 0.3 30 61.43 55.14 −10.24 4.93 4.18 −15.21
    Literature[31](C30, mw/mc=0.55) 18 20 38.60 34.28 −11.20 2.80 2.78 −0.86
    19 40 33.20 33.95 2.26 2.70 2.85 5.61
    20 60 34.00 33.63 −1.10 2.80 2.93 4.55
    21 80 32.80 33.30 1.52 2.65 3.00 13.33
    22 100 30.70 32.98 7.41
    Literature[31](C40, mw/ mc=0.45) 23 20 50.20 45.48 −9.41 2.55 2.48 −2.91
    24 40 48.20 45.15 −6.33 2.35 2.55 8.58
    25 60 50.20 44.83 −10.71 2.40 2.63 9.47
    26 80 46.70 44.50 −4.71 2.30 2.70 17.53
    27 100 47.80 44.18 −7.58
    Note: mw/mc—Water-cementc mass ratio.
    下载: 导出CSV
  • [1] 刘刚. 高强混凝土的断裂脆性及其增韧减脆措施试验研究 [D]. 武汉: 武汉大学, 2004.

    LIU G. Fracture brittleness of high strength concrete and the experimental research of toughening and reducing brittleness [D]. Wuhan: Wuhan University, 2004(in Chinese).
    [2] 黄凯健, 邓敏. 玄武岩纤维耐碱性及对混凝土力学性能的影响[J]. 复合材料学报, 2010, 27(1):150-154.

    HUANG K J, DENG M. Basalt fiber alkali resistance and its influence on the mechanical properties of concrete[J]. Acta Materiae Compositae Sinica,2010,27(1):150-154(in Chinese).
    [3] 卿龙邦, 聂雅彤, 慕儒. 钢纤维对水泥基复合材料抗起裂特性的影响[J]. 复合材料学报, 2017, 34(8):1862-1869.

    QING L B, NIE Y T, MU R. Influence of steel fibres on the resistance to crack initiation of cementitious composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1862-1869(in Chinese).
    [4] PAPACHRISTOFOROU M, PAPAYIANNI I. Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates[J]. Radiation Physics and Chemistry,2018,149:26-32.
    [5] WANG D, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials,2019,197:464-473. doi: 10.1016/j.conbuildmat.2018.11.181
    [6] ALTUN F, TANRIÖVEN F, DIRIKGIL T. Experimental investigation of mechanical properties of hybrid fiber reinforced concrete samples and prediction of energy absorption capacity of beams by fuzzy-genetic model[J]. Construction and Building Materials,2013,44:565-574. doi: 10.1016/j.conbuildmat.2013.03.043
    [7] 周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究[J]. 工程力学, 2013, 30(s1):226-231.

    ZHOU L, WANG X C, LIU H T. Experimental study of mechanical behavior and failure mode of carbon fiber reinforced concrete[J]. Engineering Mechanics,2013,30(s1):226-231(in Chinese).
    [8] 权长青, 焦楚杰, 杨云英, 等. 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22(3):363-370. doi: 10.3969/j.issn.1007-9629.2019.03.006

    QUAN C Q, JIAO C J, YANG Y Y, et al. Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete[J]. Journal of Building Materials,2019,22(3):363-370(in Chinese). doi: 10.3969/j.issn.1007-9629.2019.03.006
    [9] 高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013, 30(1):187-193.

    GAO D Y, LI H, YANG F. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica,2013,30(1):187-193(in Chinese).
    [10] 王金歌. 混杂纤维混凝土力学性能的试验研究[D]. 开封: 河南大学, 2016.

    WANG J G. Research on mechanical properties of hybrid fiber reinforced concrete[D]. Kaifeng: Henan University, 2016(in Chinese).
    [11] VIJAYARAGHAVANA J, JUDE A B, THIVYA J. Effect of copper slag, iron slag and recycled concrete aggregate on the mechanical properties of concrete[J]. Resources Policy,2017,53:219-225. doi: 10.1016/j.resourpol.2017.06.012
    [12] 朱蓓蓉, 於林峰, 张树青, 等. 矿渣代砂水泥砂浆及混凝土物理力学性能研究[J]. 建筑材料学报, 2008, 11(4):386-391. doi: 10.3969/j.issn.1007-9629.2008.04.002

    ZHU B R, YU L F, ZHANG S Q, et al. Study on physical and mechanical performance of mortar and concrete containing blast furnace slag aggregates[J]. Journal of building materials,2008,11(4):386-391(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.04.002
    [13] RAJASEKAR A, ARUNACHALAM K, KOTTAISAMY M. Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete[J]. Journal of Cleaner Production,2019,208:402-414. doi: 10.1016/j.jclepro.2018.10.118
    [14] 高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12):3441-3449.

    GAO D Y, JING J H, ZHOU X. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3441-3449(in Chinese).
    [15] 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940.

    YANG J, PENG G F. Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature[J]. Acta Materiae Compositae Sinica,2016,33(12):2931-2940(in Chinese).
    [16] 李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017, 36(2):727-732, 737.

    LI J. Effects of truncated basalt fibers on the mechanical properties and microstructure of slag fly ash concrete[J]. Bulletin of the Chinese Ceramic Society,2017,36(2):727-732, 737(in Chinese).
    [17] 袁萍, 龚礼明. 纤维材料对矿渣活性粉末混凝土力学性能影响分析[J]. 混凝土, 2009(12):58-60. doi: 10.3969/j.issn.1002-3550.2009.12.018

    YUAN P, GONG L M. Analysis of the influence of fiber materials on the mechanical properties of slag active powder concrete[J]. Concrete,2009(12):58-60(in Chinese). doi: 10.3969/j.issn.1002-3550.2009.12.018
    [18] 中国国家标准化管理委员会. 建设用砂: GB/T 14684—2011[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People’s Republic of China. Construction sand: GB/T 14684—2011[S]. Beijing: China Standards Press, 2012(in Chinese).
    [19] 方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001.

    FANG K T, MA C X. Orthogonal and uniform experimental design [M]. Beijing: Science Press, 2001(in Chinese).
    [20] 王闯, 王爱玲, 张修身. 短碳纤维的分散性对CFRC力学性能的影响[J]. 材料导报, 2007, 21(5):125-128. doi: 10.3321/j.issn:1005-023X.2007.05.033

    WANG C, WANG A L, ZHANG X S. Effect of dispersion of short carbon fibers on the mechanical properties of CFRC composites[J]. Materials Review,2007,21(5):125-128(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.05.033
    [21] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rura Development of the People’s Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press, 2017(in Chinese).
    [22] 中国国家标准化管理委员会. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国标准出版社, 2003.

    Standardization Administration of the People’s Republic of China. standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Standards Press, 2003(in Chinese).
    [23] 徐至钧. 纤维混凝土技术及应用[M]. 北京: 中国建筑工业出版社, 2003.

    XU Z J. Technology and application of fiber reinforced concrete[M]. Beijing: China Architecture & Building Press, 2003(in Chinese).
    [24] 陈颖. 单次多水平正交试验中效应的显著性检验[J]. 应用概率统计, 2011, 27(5):497-510. doi: 10.3969/j.issn.1001-4268.2011.05.005

    CHEN Y. A significance test in multi-level orthogonal designs with only one replicate[J]. Chinese Journal of Applied Probability,2011,27(5):497-510(in Chinese). doi: 10.3969/j.issn.1001-4268.2011.05.005
    [25] 董振英, 李庆斌. 纤维增强脆性复合材料细观力学若干进展[J]. 力学进展, 2001, 31(4):555-582. doi: 10.3321/j.issn:1000-0992.2001.04.010

    DONG Z Y, LI Q B. Fiber reinforced brittle composite several advances on mesoscopic mechanics[J]. Advances in Mechanics,2001,31(4):555-582(in Chinese). doi: 10.3321/j.issn:1000-0992.2001.04.010
    [26] 何世钦, 王海超. 高性能混凝土配合比设计的正交试验研究[J]. 工业建筑, 2003, 33(8):8-10, 41. doi: 10.3321/j.issn:1000-8993.2003.08.003

    HE S Q, WANG H C. Orthogonal experimental studies on mix design of high performance concrete[J]. Industrial Construction,2003,33(8):8-10, 41(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.08.003
    [27] 张振雷. 混杂纤维混凝土力学性能研究[J]. 玻璃钢/复合材料, 2019(6):43-48. doi: 10.3969/j.issn.1003-0999.2019.06.007

    ZHANG Z L. Research on mechanical properties of hybrid fiber concrete[J]. Glass Reinforced Plastics/Composites,2019(6):43-48(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.007
    [28] 张培辉, 方圣恩, 洪华山. 不同纤维增强混凝土力学性能和破坏形态对比试验[J]. 玻璃钢/复合材料, 2019(6):73-79. doi: 10.3969/j.issn.1003-0999.2019.06.012

    ZHANG P H, FANG S E, HONG H S. Comparative test of mechanical properties and failure modes of concrete reinforced with different fibers[J]. Glass Reinforced Plastics/Composites,2019(6):73-79(in Chinese). doi: 10.3969/j.issn.1003-0999.2019.06.012
    [29] 王钧, 任靖豪, 郭大鹏. 短切玄武岩纤维混凝土基本力学性能的尺寸效应[J]. 建筑科学与工程学报, 2015, 32(5):96-103. doi: 10.3969/j.issn.1673-2049.2015.05.013

    WANG J, REN J H, GUO D P. Size effect of basic mechanical properties of short-cut basalt fiber concrete[J]. Journal of Architecture and Civil Engineering,2015,32(5):96-103(in Chinese). doi: 10.3969/j.issn.1673-2049.2015.05.013
    [30] SAMANI M A, LAK S J. Experimental investigation on the mechanical properties of recycled aggregate concrete reinforced by waste carbon fibers[J]. International Journal of Environmental Science and Technology,2019,16:4519-4530.
    [31] MAVROULIDOU M. Mechanical properties and durability of concrete with water cooled copper slag aggregate[J]. Waste and Biomass Valorization,2017,8:1841-1854.
  • 加载中
图(5) / 表(10)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  237
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 录用日期:  2019-09-22
  • 网络出版日期:  2019-09-30
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回