留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米TiO2/碳化植物纤维复合材料的制备与光催化性能

任保胜 王瑞 任金芝 李建权 陈其凤

任保胜, 王瑞, 任金芝, 等. 纳米TiO2/碳化植物纤维复合材料的制备与光催化性能[J]. 复合材料学报, 2020, 37(5): 1138-1147. doi: 10.13801/j.cnki.fhclxb.20190924.003
引用本文: 任保胜, 王瑞, 任金芝, 等. 纳米TiO2/碳化植物纤维复合材料的制备与光催化性能[J]. 复合材料学报, 2020, 37(5): 1138-1147. doi: 10.13801/j.cnki.fhclxb.20190924.003
REN Baosheng, WANG Rui, REN Jinzhi, et al. Preparation and photocatalytic properties of nano TiO2/carbonized plant fiber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1138-1147. doi: 10.13801/j.cnki.fhclxb.20190924.003
Citation: REN Baosheng, WANG Rui, REN Jinzhi, et al. Preparation and photocatalytic properties of nano TiO2/carbonized plant fiber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1138-1147. doi: 10.13801/j.cnki.fhclxb.20190924.003

纳米TiO2/碳化植物纤维复合材料的制备与光催化性能

doi: 10.13801/j.cnki.fhclxb.20190924.003
基金项目: 国家自然科学基金(21477047);山东省自然科学基金(ZR2016EMM07)
详细信息
    通讯作者:

    陈其凤,博士,副教授,硕士生导师,研究方向为微/纳米功能材料与光催化 E-mail:qfchen@126.com

  • 中图分类号: TB332

Preparation and photocatalytic properties of nano TiO2/carbonized plant fiber composites

  • 摘要: 以碳化植物纤维(CPF)为载体,将纳米TiO2附着于纤维表面,通过浸渍煅烧法和溶剂热法合成纳米TiO2/CPF复合光催化剂,并对其光催化性能进行了研究。通过SEM、HRTEM、XRD、EDS分析了纳米TiO2/CPF复合光催化剂的微观结构和化学组成;以光催化降解亚甲基蓝为模型反应,考察复合材料中不同纤维种类和TiO2负载量对光催化活性的影响。结果表明,在一定范围内随TiO2负载量的增加,纳米TiO2/CPF复合材料光催化性能先增强后减弱。纳米TiO2/CPF复合材料的光催化性能明显提高是由于在TiO2和碳纤维界面的良好电荷分离能力。降解染料的活性物种有超氧负离子和羟基自由基,但羟基自由基是主要物种。此外,浸渍煅烧法和溶剂热法生成的纳米TiO2在纤维表面的存在形式不同,浸渍煅烧法生成纳米TiO2薄膜,包裹纤维;而溶剂热法生成的TiO2结晶成纳米颗粒,附着于纤维表面。

     

  • 图  1  CPF和溶剂热法制备的纳米TiO2/CPF复合光催化剂的SEM图像

    Figure  1.  SEM images of CPF and nano TiO2/CPF composite photocatalysts prepared by solvothermal method ((a) CBF; (b) CCF; (c) CTF; (d) TiO2/CBF; (e) TiO2/CCF; (f) TiO2/CTF)

    图  2  浸渍煅烧法制备的纳米TiO2/碳化楠竹纤维(CBF)复合光催化剂断面形貌的SEM图像

    Figure  2.  SEM images of section morphology of nano TiO2/carbonized bamboo fiber(CBF) composite photocatalysts prepared by impregnation-calcination method ((a) B1-TiO2/CBF; (b) C1-TiO2/CBF)

    图  3  不同方法制备的纳米TiO2/CBF复合光催化剂的XRD图谱

    Figure  3.  XRD patterns of nano TiO2/CBF composite photocatalysts prepared by different methods

    图  4  溶剂热法制备的不同TiO2与碳化纺织纤维(CTF)质量比的TiO2/CTF复合光催化剂的SEM图像

    Figure  4.  SEM images of nano TiO2/carbonized textile fiber(CTF) composite photocatalysts prepared by solvothermal method with different mass ratios of TiO2 to CTF ((a) B2-TiO2/CTF; (b) C2-TiO2/CTF; (c) D2-TiO2/CTF)

    图  5  不同方法制备的纳米TiO2/CTF复合光催化剂的SEM图像

    Figure  5.  SEM images of nano TiO2/CTF composite photocatalysts prepared by different methods ((a) C1-TiO2/CTF ; (b) C2-TiO2/CTF)

    图  6  不同方法制备的纳米TiO2/CTF复合光催化剂的HRTEM图像

    Figure  6.  HRTEM images of TiO2/CTF composite photocatalysts prepared by different methods ((a)–(c) Solvothermal; (d)–(f) Impregnation-calcination)

    图  7  不同方法制备的纳米TiO2/CTF复合光催化剂的EDS图谱

    Figure  7.  EDS spectrum of TiO2/CTF composite photocatalysts prepared by different methods ((a)Impregnation-calcination; (b) Solvothermal)

    图  8  CBF、碳化棉纤维(CCF)和CTF的拉曼图谱(a)及TiO2和不同TiO2与CTF质量比的纳米TiO2/CTF复合光催化剂的XRD图谱(b)

    Figure  8.  Raman spectra (a) of CBF, carbonized cotton fiber (CCF) and CTF and XRD patterns (b) of TiO2 and nano TiO2/CTF composite photocatalysts with different mass ratios of TiO2 to CTF (TiO2 nanoparticles prepared by sol-gel method, the dotted line is the standard card peak of anatase TiO2)

    图  9  不同方法制备的纳米TiO2/CPF复合光催化剂(a) 及CTF、TiO2和不同TiO2与CTF质量比的纳米TiO2/CTF复合光催化剂光催化降解亚甲基蓝活性(b)

    Figure  9.  Photocatalytic degradation activity of methylene blue of nano TiO2/CPF composite photocatalysts prepared by different methods (a) and CTF, TiO2 and nano TiO2/CTF composite photocatalysts with different mass ratio of TiO2 to CTF(b)

    图  10  C2-TiO2/CTF复合光催化剂降解亚甲基蓝的紫外光吸收曲线

    Figure  10.  UV absorption curves of photodegradation of methylene blue by C2-TiO2/CTF composite photocatalysts

    图  11  超氧自由基在乙醇中捕获和羟基自由基在水中捕获的实验

    Figure  11.  Experiments of superoxide radical captured in ethanol and hydroxyl radical captured in water

    图  12  TiO2和C2-TiO2/CTF复合光催化剂的荧光光谱

    Figure  12.  Photoluminescence spectra of TiO2 and C2-TiO2/CTF composite photocatalysts

    图  13  C2-TiO2/CTF复合光催化剂降解亚甲基蓝的循环实验

    Figure  13.  Cycle experiments of C2-TiO2/CTF composite photocatalysts used for photocatalytic degradation of methylene blue

    表  1  两种不同方法制备纳米TiO2/碳化植物纤维(CPF)复合光催化剂的名称

    Table  1.   Designations of nano TiO2/carbonized plant fiber(CPF) composite photocatalysts synthesized by two different methods

    Method Mass ratio of TiO2 to CPF
    2.5% 5% 10% 20%
    Impregnation-calcination A1-TiO2/CPF B1-TiO2/CPF C1-TiO2/CPF D1-TiO2/CPF
    Solvothermal A2-TiO2/CPF B2-TiO2/CPF C2-TiO2/CPF D2-TiO2/CPF
    Notes: CPF represents CBF, CCF and CTF, respectively; CBF—Carbonized bamboo fiber; CCF—Carbonized cotton fiber; CTF—Carbonized textile fiber.
    下载: 导出CSV
  • [1] WANG H, CHEN Q F, LUAN Q R, et al. Photocatalytic properties dependent on the interfacial defects of intergrains within TiO2 mesocrystals[J]. Chemistry: A European Journal,2018,24(64):17105-17116. doi: 10.1002/chem.201803516
    [2] 张金龙, 陈锋, 田宝柱, 等. 光催化[M]. 上海: 华东理工大学出版社, 2012.

    ZHANG J L, CHEN F, TIAN B Z, et al. Photocatalysis[M]. Shanghai: East China University of Science and Technology University Press, 2012(in Chinese).
    [3] TAYADE R J, SUROLIA P K, KULKARNI R G, et al. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2[J]. Science and Technology of Advanced Materials,2007,8(6):455-462. doi: 10.1016/j.stam.2007.05.006
    [4] NAGAVENI K, SIVALINGAM G, HEGDE M S, et al. Solar photocatalytic degradation of dyes: High activity of combustion synthesized nanoTiO2[J]. Applied Catalysis B: Environmental,2004,48(2):83-93. doi: 10.1016/j.apcatb.2003.09.013
    [5] SUZUKI M. Photocatalysis material comprise of activated carbon and titanium, dioxide ultrafine particles: Japan, JP 155125/96[P]. 1996.
    [6] 彭峰, 姜靖雯, 王红娟, 等. 碳纳米管负载的Fe2O3催化剂制备[J]. 无机化学学报, 2004, 20(2):231-235. doi: 10.3321/j.issn:1001-4861.2004.02.023

    PENG F, JIANG J W, WANG H J, et al. Preparation of carbon nanotubes supported Fe2O3 catalysts[J]. Chinese Journal of Inorganic Chemistry,2004,20(2):231-235(in Chinese). doi: 10.3321/j.issn:1001-4861.2004.02.023
    [7] WANG B, KARTHIKEYAN R, LU X Y, et al. High photocatalytic activity of immobilized TiO2, nanorods on carbonized cotton fibers[J]. Journal of Hazardous Materials,2013,263:659-669. doi: 10.1016/j.jhazmat.2013.10.029
    [8] 米静艳, 殷蓉, 罗青枝, 等. 纳米TiO2/聚氯乙烯共轭衍生物复合材料的制备及可见光催化性能[J]. 复合材料学报, 2019, 36(5):1263-1274.

    MI J Y, YIN R, LUO Q Z, et al. Preparation and visible-light photocatalytic performances of nano TiO2/polyvinyl chloride conjugated derivative composite[J]. Acta Materiae Compositae Sinica,2019,36(5):1263-1274(in Chinese).
    [9] 李全明. 活性碳纤维的制备及性能研究[D]. 长春: 吉林大学, 2010.

    LI Q M. Preparation and properties of activated carbon fiber[D]. Changchun: Jilin University, 2010(in Chinese).
    [10] WANG Q, QIN Z N, CHEN J, et al. Green synthesis of nickel species in situ modified hollow microsphere TiO2 with enhanced photocatalytic activity[J]. Applied Surface Science,2016,364:1-8. doi: 10.1016/j.apsusc.2015.12.033
    [11] YANG K, CHEN X, ZHENG Z, et al. Solvent-induced surface disorder and doping induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching[J]. Journal of Materials Chemistry A,2019,7(8):3863-3873. doi: 10.1039/C8TA10045D
    [12] THANH N T K, MACLEAN N, MAHIDDINE S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews,2014,114(15):7610-7630. doi: 10.1021/cr400544s
    [13] LAN K, LIU Y, ZHANG W, et al. Uniform ordered two-dimensional mesoporous TiO2 Nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. Journal of American Chemistry Society,2018,140(11):4135-4143. doi: 10.1021/jacs.8b00909
    [14] 师小萍, 于广辉, 王斌, 等. Cu上石墨烯的化学气相沉积法生长研究[J]. 功能材料与器件学报, 2011, 17(5):486-490. doi: 10.3969/j.issn.1007-4252.2011.05.012

    SHI X P, YU G H, WANG B, et al. Graphene synthesis on cu by chemical vapor deposition[J]. Journal of Functional Materials and Devices,2011,17(5):486-490(in Chinese). doi: 10.3969/j.issn.1007-4252.2011.05.012
    [15] 铁伟伟, 杜兆禹, 高远浩, 等. 原位反应制备ZnS/还原氧化石墨烯复合材料及其光催化性能[J]. 复合材料学报, 2017, 34(5):1082-1087.

    TIE W W, DU Z Y, GAO Y H, et al. In-situ reaction fabrication of ZnS/reduced graphene oxide composited and its photocatalytic property[J]. Acta Materiae Composite Sinica,2017,34(5):1082-1087(in Chinese).
    [16] POSTNOVA I, KOZLOVA E, CHEREPANOVA S, et al. Titania synthesized through regulated mineralization of cellulose and its photocatalytic activity[J]. RSC Advances,2015,5(12):8544-8551. doi: 10.1039/C4RA15862H
    [17] SHE X, XU H, YU Y, et al. Accelerating photogenerated charge kinetics via the synergetic utilization of 2D semiconducting structural advantages and noble-metal-free schottky junction effect[J]. Small,2019,15(11):1804613. doi: 10.1002/smll.201804613
    [18] 胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):207-212.

    HU X J, HU Y, XIE W L, et al. Preparation and photocatalytic properties of ZnS/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(1):207-212(in Chinese).
    [19] 县涛, 邸丽景, 马俊, 等. 纳米BiVO4/BaTiO3复合材料光催化降解性能[J]. 复合材料学报, 2019, 36(3):756-763.

    XIAN T, DI L J, MA J, et al. Photocatalytic degradation property of nano BiVO4/BaTiO3 composite[J]. Acta Materiae Compositae Sinica,2019,36(3):756-763(in Chinese).
    [20] CHEN Q F, SHI H J, SHI W M, et al. Enhanced visible photocatalytic activity of titania-silica photocatalysts: Effect of carbon and silver doping[J]. Catalysis Science & Technology,2012,2(6):1213-1220.
    [21] ZHUANG J, DAI W, TIAN Q, et al. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location[J]. Langmuir,2010,26(12):9686-9694. doi: 10.1021/la100302m
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1007
  • HTML全文浏览量:  122
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 录用日期:  2019-08-27
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回