留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能

李哲 黄尧 吴刚强 杜宇 范晓静 吴大鸣

李哲, 黄尧, 吴刚强, 等. 基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能[J]. 复合材料学报, 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
引用本文: 李哲, 黄尧, 吴刚强, 等. 基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能[J]. 复合材料学报, 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
LI Zhe, HUANG Yao, WU Gangqiang, et al. Properties of short carbon fiber/ethylene-vinyl acetate copolymer high conductivity composites prepared by spatial confining forced network assembly method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002
Citation: LI Zhe, HUANG Yao, WU Gangqiang, et al. Properties of short carbon fiber/ethylene-vinyl acetate copolymer high conductivity composites prepared by spatial confining forced network assembly method[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1234-1242. doi: 10.13801/j.cnki.fhclxb.20190924.002

基于空间限域强制组装法制备短切碳纤维/乙烯-醋酸乙烯导电复合材料性能

doi: 10.13801/j.cnki.fhclxb.20190924.002
基金项目: 中央高校基本科研业务费(校级)(JD1810)
详细信息
    通讯作者:

    吴大鸣,博士,教授,博士生导师,研究方向为高分子材料性能及加工工艺 E-mail:wudaming@vip.163.com

  • 中图分类号: TB332

Properties of short carbon fiber/ethylene-vinyl acetate copolymer high conductivity composites prepared by spatial confining forced network assembly method

  • 摘要: 采用空间限域强制组装法(SCFNA)制备短切碳纤维/乙烯-醋酸乙烯共聚物(SCF/EVA)导电复合材料,研究SCFNA方法制备SCF/EVA复合材料中导电填料分布形态的演变规律及该方法对复合材料导电性能和力学性能的影响。与传统共混方法相比,采用SCFNA方法制备的SCF/EVA复合材料,导电网络上SCF的间距变小,网络密实度显著提高,导电性能得到大幅度提升并具有良好的力学性能。实验表明:通过SCFNA方法制备的SCF/EVA复合材料的逾渗阈值为6.5 wt%,低于共混自组装法的8.2 wt%。相同SCF质量分数下,SCF/EVA复合材料的电导率比共混法自组装最高提高4个数量级。随着SCF质量分数的增加,SCF/EVA复合材料的力学性能呈先提高后降低的趋势,其中10 wt%SCF/EVA复合材料的力学性能最优,拉伸强度达到19.86 MPa。

     

  • 图  1  空间限域强制组装(SCFNA)方法的过程[21]

    Figure  1.  Process of the spatial confining forced network assembly(SCFNA) method[21]

    图  2  SCFNA法制备短切碳纤维/乙烯-醋酸乙烯共聚物(SCF/EVA)复合材料工艺流程

    Figure  2.  Technological process preparing short carbon fiber/ethylene-vinyl acetate copolymer(SCF/EVA) composite using SCFNA method

    图  3  共混自组装法和SCFNA法制备10 wt%SCF/EVA导电复合材料各个阶段试样断面SEM图像

    Figure  3.  SEM images of 10 wt%SCF/EVA conductive composite samples at each stage prepared by blending self-assembly method and SCFNA method

    图  4  SCF/EVA复合材料中SCF质量分数与电导率的关系

    Figure  4.  Relationship of SCF mass fraction and conductivity of SCF/EVA composites

    图  5  共混自组装法和SCFNA法制备的SCF/EVA复合材料逾渗阈值拟合结果

    Figure  5.  Percolation threshold fitting results of SCF/EVA composites prepared by blending self-assembly method and SCFNA method

    图  6  共混自组装法和SCFNA法制备的SCF/EVA复合材料中SCF质量分数与电导率之间的关系

    Figure  6.  Relationship of SCF mass fraction and electrical conductivity of SCF/EVA composites prepared by blending self-assembly method and SCFNA method

    图  7  10 wt%SCF/EVA复合材料试样厚度与电导率关系

    Figure  7.  Relationship between sample thickness and conductivity of10 wt%SCF/EVA composite

    图  8  SCF/EVA复合材料中SCF的质量分数与拉伸强度之间的关系

    Figure  8.  Relationship between SCF mass fraction and tensile strength of SCF/EVA composites

    Xt—Longitudinal tensile strength; σfu—Fracture stress of fiber; σmu— Fracture stress of the matrix;σm—Matrix strain is equal to the matrix stress when the fiber fracture strain; $\varphi $fmin—Fiber minimum mass fraction; $\varphi $fcr—Fiber critical mass fraction; $\varphi $fmax—Fiber mass fraction;$\varphi $f—Fiber mass fraction.

    图  9  SCFNA法制备的SCF/EVA复合材料的拉伸强度随SCF质量分数的变化

    Figure  9.  Variation of tensile strength of EVA/SCF composites prepared by SCFNA method with SCF mass fraction

    图  10  SCFNA法制备的SCF/EVA复合材料应力-应变关系

    Figure  10.  Stress-strain relationship of SCF/EVA composites prepared by SCFNA method

    表  1  SCF/EVA复合材料的电导率

    Table  1.   Conductivity of SCF/EVA composites

    SCF mass
    fraction/wt%
    SCFNABlending self-assembly
    conductivity/(S·m−1)
    Conductivity increase
    multiple
    Thickness/mmConductivity/(S·m−1)
    50.17.64×10−123.63×10−132.10×10
    0.24.12×10−121.13×10
    0.39.63×10−132.65
    0.46.56×10−131.81
    70.15.79×10−109.60×10−136.03×102
    0.22.13×10−102.22×102
    0.38.54×10−118.90×10
    0.42.53×10−112.64×10
    100.14.21×10−61.62×10−102.60×104
    0.26.59×10−74.07×103
    0.34.99×10−73.08×103
    0.41.95×10−71.40×103
    130.11.251.49×10−28.39×10
    0.28.61×10−15.77×10
    0.37.30×10−14.90×10
    0.45.60×10−13.76×10
    150.13.269.25×10−23.52×10
    0.21.731.87×10
    0.31.031.11×10
    0.48.21×10−19.30
    180.13.30×102.60×10−11.27×102
    0.22.08×108.00×10
    0.31.45×105.58×10
    0.48.223.39×10
    200.17.90×105.111.55×10
    0.25.68×101.11×10
    0.33.29×106.44
    0.42.41×104.72
    250.11.22×1021.02×101.20×10
    0.27.97×107.81
    0.34.62×104.53
    0.43.86×103.87
    300.11.66×1021.63×101.02×10
    0.21.18×1027.24
    0.38.12×104.98
    0.46.61×104.06
    下载: 导出CSV

    表  2  10 wt%SCF/EVA复合材料不同压缩比的电导率

    Table  2.   Conductivity of 10 wt%SCF/EVA compostie with different compression ratios

    Sample thickness/mmε/%Conductivity/(S·m−1)
    0.186.304.21×10−6
    0.1579.452.62×10−6
    0.272.606.59×10−7
    0.2565.755.25×10−7
    0.358.904.99×10−7
    0.445.211.95×10−7
    0.531.518.22×10−8
    0.617.814.89×10−8
    0.74.115.35×10−10
    0.8−9.593.36×10−10
    1.0−36.991.62×10−10
    1.25−71.231.07×10−10
    1.5−105.489.26×10−11
    2.0−173.978.95×10−11
    Note: ε—Forced compression ratio.
    下载: 导出CSV
  • [1] WAN Chengyu, GUO Qiang, ZHANG Yahui, et al. Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks[J]. Chemical Engineering Journal,2019, 373:556-564.
    [2] 范晓静, 吴大鸣, 高小龙, 等. 基于空间限域强制组装法制备短切碳纤维-碳纳米管/聚二甲基硅氧烷导电复合材料性能[J]. 复合材料学报, 2019, 36(11):2552-2560.

    FAN Xiaojing, WU Daming, GAO Xiaolong, et al. Properties of short carbon fiber-carbon nanotube/polydimethylsiloxane conductive composites prepared by spatial confining forced network assembly method[J]. Acta Materiae Compositae Sinica,2019,36(11):2552-2560(in Chinese).
    [3] KIM S J, HONG C, JANG K S. Theoretical analysis and development of thermally conductive polymer compo-sites[J]. Polymer,2019,176:110-117. doi: 10.1016/j.polymer.2019.05.044
    [4] 孙立波. 导电聚合物复合材料的制备与表征[D]. 济南: 山东大学, 2014.

    SUN Libo.Preparation and characterization of conductive polymer composites[D]. Ji’nan: Shandong University, 2014(in Chinese).
    [5] LIU Y, ZHANG H, PORWAL H, et al. Pyroresistivity in conductive polymer composites: A perspective on recent advances and new applications[J]. Polymer International,2019,68(3):299-305.
    [6] HARANO T, MURAO R, TAKEICHI Y, et al. Observation of the interface between resin and carbon fiberby scanning transmission X-ray microscopy[J]. Journal of Physics: Conference Series,2017,849(1):12-23.
    [7] 李善霖, 段华军, 汪鑫, 等. 镀镍碳纤维-碳纤维-玻璃纤维/乙烯基酯树脂导电复合材料的设计制备及其电磁性能[J]. 复合材料学报, 2018, 35(7):1709-1715.

    LI Shanlin, DUAN Huajun, WANG Xin, et al. Design and preparation of niplated carbon fiber-carbon fiber-glass fiber/vinyl ester resin conductive composites and their electromagnetic propertyes[J]. Acta Materiae Composit-ae Sinica,2018,35(7):1709-1715(in Chinese).
    [8] PATLOLLA A K, PATRA P K, FLOUNTAN M, et al. Cytogenetic evaluation of functionalized single-walled carbon nanotube in mice bonemarrow cells[J]. Environmental Toxicology,2016,31(9):1091-1102. doi: 10.1002/tox.22118
    [9] EDGINGTON A J, PETERSEN E J, HERZING A A, et al. Microscopic investigation of single-wall carbon nanotube uptake by daphnia magna[J]. Nanotoxicology,2014,8(sup1):2-10. doi: 10.3109/17435390.2013.847504
    [10] MOUTEVA G O, CZIMCZIK C I, FAHRNI S M, et al. Black carbon aerosol dynamics and isotopic composition in alaska linked with boreal fire emissions and depth of burn in organic soils[J]. Global Biogeochemical Cycles,2015,29(11):1977-2000. doi: 10.1002/2015GB005247
    [11] ZHAO Y S, YI M, LARRY W H, et al. On the seasonality of arctic black carbon[J]. Journal of Climate,2017,30(12):4429-4441. doi: 10.1175/JCLI-D-16-0580.1
    [12] 于金平, 陈潇健, 曹振东, 等. 导电炭黑改性PE-RT抗静电复合材料的形貌与性能[J]. 复合材料学报, 2015, 32(5):1321-1329.

    YU Jinping, CHEN Xiaojian, CAO Zhendong, et al. Morphology and properties of PE-RT antistatic composites modified by conductive carbon black[J]. Acta Materiae Compositae Sinica,2015,32(5):1321-1329(in Chinese).
    [13] RODRIGUES I, GUEDES M, FERRO A C L. Microstructural changes in copper-graphite-alumina nanocomposites produced by mechanical alloying[J]. Microscopy and Microanalysis,2015,21(1):120-131. doi: 10.1017/S1431927614013403
    [14] LOISEL L, FLOREA I, COJOCARU C S, et al. Oxidation based continuous laser writing in vertical nano crystalline graphite thin films[J]. Scientific Reports,2016,6:26224. doi: 10.1038/srep26224
    [15] LEE S W, CHOI B I, KIM J C, et al. Adsorption/desorption hysteresis of thin-film humidity sensors based on graphene oxide and its derivative[J]. Sensors and Actuato-rs B: Chemical,2016,237:575-580. doi: 10.1016/j.snb.2016.06.113
    [16] MA T, ARIGA H, TAKAKUSAGI S, et al. Smooth epitaxial copper film on sapphire surface suitable for high quality graphene growth[J]. Thin Solid Films,2018,646:12-16. doi: 10.1016/j.tsf.2017.11.009
    [17] QUILES C L, MONTANES N, PINEIRO F, et al. Ductility and toughness improvement of injection molded compostable pieces of polylactide by melt blending with poly (ε-caprolactone) and thermoplastic starch[J]. Materials,2018,11(11):2138. doi: 10.3390/ma11112138
    [18] ANAKABE J, ZALDUA HUICI A M, ECEIZA A, et al. Melt blending of polylactide and poly (methyl methacrylate): Thermal and mechanical properties and phase morphology characterization[J]. Journal of Applied Polymer Science,2015,132(42):42677.
    [19] ZHOU Huanyu, LIU Gengling, LIU Jinliang, et al. Effective network formation of PEDOT by in-situ polymerization using novel organic template and nanocomposite supercapacitor[J]. Electrochimica Acta,2017,247:871-879. doi: 10.1016/j.electacta.2017.07.078
    [20] 李海洋, 郭飞, 石颖, 等. 溶液共混法制备PVDF/PMMA/MMT复合材料及其结构表征[J]. 南京工程学院学报(自然科学版), 2016, 14(2):45-48.

    LI Haiyang, GUO Fei, SHI Ying, et al. Preparing composites PVDF/PMMA/MMT using solution blending and its structural characterization[J]. Journal of Nanjing Institute of Technology(Natural Science Edition),2016,14(2):45-48(in Chinese).
    [21] GAO X, HUANG Y, LIU Y, et al. Improved electrical conductivity of PDMS/SCF composite sheets with bolting cloth prepared by a spatial confining forced network assembly method[J]. RSC Adv,2017,7(24):14761-14768. doi: 10.1039/C7RA02061A
    [22] CHANG C M, LIU Y L. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally induced defunctionalization of MWCNTs[J]. ACS Applied Materials & Interfaces,2011,3(7):2204-2208.
    [23] WU D, GAU X, SUN J, et al. Spatial confining forced network assembly for preparation of high performance conductive polymeric composites[J]. Composites Part A: Applied Science and Manufacturing,2017,102:88-95. doi: 10.1016/j.compositesa.2017.07.027
    [24] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分: 总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. Plastics-Determination of tensile properties Part 1: General: GB/T 1040.1—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  188
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-23
  • 录用日期:  2019-08-23
  • 网络出版日期:  2019-09-25
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回