留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能

张明艳 杨振华 吴子剑 王登辉 刘居 杨镕琛

张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5): 1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001
引用本文: 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5): 1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001
ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001
Citation: ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1024-1032. doi: 10.13801/j.cnki.fhclxb.20190923.001

新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能

doi: 10.13801/j.cnki.fhclxb.20190923.001
基金项目: 工程电介质及应用教育部重点实验室2017年前沿项目预研基金(2018EDAQY05);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018214);哈尔滨市科技创新人才(2017RAQXJ105)
详细信息
    通讯作者:

    吴子剑,博士,讲师,研究方向为树脂基复合材料、柔性应变传感器 E-mail:zijian.wu@hrbust.edu.cn

  • 中图分类号: TB3383.1

Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor

  • 摘要: 为了提升柔性应变传感器性能,采用静电纺丝技术制备聚偏氟乙烯(PVDF)静电纺丝膜后,将自制纳米Ag线(AgNWs)抽滤在PVDF静电纺丝膜表面,作为导电层。采用聚二甲基硅氧烷(PDMS)对导电层进行双面固化,制备了系列导电层中不同AgNWs含量的新型三明治结构的PDMS/PVDF-AgNWs/PDMS柔性应变传感器,并对其性能进行表征和分析。结果表明,静电纺丝膜的引入明显改善了PDMS/PVDF-AgNWs/PDMS柔性应变传感器的各项性能,减少了滞后现象,增加了传感器的灵敏度和可重复性,并大幅提升了使用寿命。当导电层中AgNWs质量为 0.030 g,应变达到10%时,PDMS/PVDF-AgNWs/PDMS柔性应变传感器灵敏度的传感系数可达143.85。对PDMS/PVDF-AgNWs/PDMS柔性应变传感器进行30天可重复试验后,在设定位移为5 mm、每天拉伸20次的条件下,PDMS/PVDF-AgNWs/PDMS柔性应变传感器的初始电阻值仅比初次试验时增加了约2 Ω,较最大位移时的电阻值可忽略不计。

     

  • 图  1  聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷 (PDMS/PVDF-AgNWs/PDMS)柔性应变传感器的结构示意图

    Figure  1.  Schematic diagram of polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane (PDMS/PVDF-AgNWs/PDMS) flexible strain sensor

    图  2  PDMS/PVDF-AgNWs/PDMS柔性应变传感器性能测试装置

    Figure  2.  Performance test device of PDMS/PVDF-AgNWs/PDMS flexible strain sensor

    图  3  AgNWs的SEM图像

    Figure  3.  SEM images of AgNWs

    图  4  PVDF静电纺丝膜的SEM图像

    Figure  4.  SEM images of PVDF electrospinning film

    图  5  PVDF-AgNWs的SEM图像

    Figure  5.  SEM images of PVDF-AgNWs

    图  6  PDMS/PVDF-AgNWs/PDMS柔性应变传感器的SEM图像

    Figure  6.  SEM image of PDMS/PVDF-AgNWs/PDMS flexible strain sensor

    图  7  PDMS/PVDF-AgNWs/PDMS柔性应变传感器实物图

    Figure  7.  Physical map of PDMS/PVDF-AgNWs/PDMS flexible strain sensor((a) Original state; (b) Tensile deformation; (c) Tolding deformation; (d) Torsional deformation)

    图  8  PDMS/PVDF-AgNWs/PDMS柔性应变传感器电阻-位移曲线

    Figure  8.  Resistance-displacement curves of PDMS/PVDF-AgNWs/PDMS flexible strain sensor

    图  9  PDMS/PVDF-AgNWs/PDMS柔性应变传感器拉伸前后导电层中AgNWs排布示意图

    Figure  9.  Schematic diagram of AgNWs arrangement in conductive layer before and after stretching of PDMS/PVDF-AgNWs/PDMS flexible strain sensor

    图  10  PDMS/PVDF-AgNWs/PDMS柔性应变传感器在不同拉伸速度下的位移-电阻变化曲线

    Figure  10.  Displacement-resistance curves of PDMS/PVDF-AgNWs/PDMS flexible strain sensor at different tensile speeds

    图  11  不同AgNWs质量的PDMS/PVDF-AgNWs/PDMS柔性应变传感器在拉伸速度为20 mm/min时的时间-电阻曲线

    Figure  11.  Time-resistance curves of PDMS/PVDF-AgNWs/PDMS flexible strain sensor with different mass of AgNWs at tensile speed of 20 mm/min

    图  12  不同AgNWs质量的PDMS/PVDF-AgNWs/PDMS柔性应变传感器的灵敏度曲线

    Figure  12.  Sensitivity curves of PDMS/PVDF-AgNWs/PDMS flexible strain sensors with different mass of AgNWs

    图  13  不同应变下PDMS/PVDF-AgNWs/PDMS柔性应变传感器点亮LED灯泡图片

    Figure  13.  Photograph of PDMS/PVDF-AgNWs/PDMS flexible strain sensor illuminates LED bulb under different strains ((a) ε=0; (b) ε=1%; (c) ε=5%; (d) ε=10%)

    图  14  PVDF-AgNWs-PDMS柔性应变传感器的可重复性测试曲线

    Figure  14.  Repeatability test curve of PVDF-AgNWs-PDMS flexible strain sensor

  • [1] 曾天禹, 黄显. 可穿戴传感器进展、挑战和发展趋势[J]. 科技导报, 2017, 35(2):19-32.

    ZENG Tianyu, HUANG Xian. Progress, challenges and development trends of wearable sensors[J]. Science and Technology Review,2017,35(2):19-32(in Chinese).
    [2] 程琼, 刘玮, 林兰天, 等. 碳纳米管柔性应变传感器在智能纺织品中的应用[J]. 河北科技大学学报, 2017, 38(5):474-479. doi: 10.7535/hbkd.2017yx05010

    CHENG Qiong, LIU Wei, LIN Lantian, et al. Application of carbon nanotube flexible strain sensor in smart textiles[J]. Journal of Hebei University of Science and Technology,2017,38(5):474-479(in Chinese). doi: 10.7535/hbkd.2017yx05010
    [3] PANG C, KOO J H, NGUYEN A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials,2015,27(4):634-640.
    [4] 段建瑞, 李斌, 李帅臻, 等. 常用新型柔性传感器的研究进展[J]. 传感器与微系统, 2015, 34(11):1-4.

    DUAN Jianrui, LI Bin, LI Shuaizhen, et al. Research progress of commonly used new flexible sensors[J]. Transducer and Microsystems,2015,34(11):1-4(in Chinese).
    [5] 高会, 黄龙男, 刘彦菊, 等. 形状记忆聚合物在柔性光/电子器件领域的发展与挑战[J]. 复合材料学报, 2018, 35(12):3235-3246.

    GAO Hui, HUANG Longnan, LIU Yanju, et al. Development and challenges of shape memory polymers in the field of flexible optical/electronic devices[J]. Acta Materiae Compositae Sinica,2018,35(12):3235-3246(in Chinese).
    [6] 史济东. 基于碳纳米管石墨烯复合薄膜的柔性应变传感器[J]. 应用技术学报, 2018, 18(1):90-91. doi: 10.3969/j.issn.2096-3424.2018.01.016

    SHI Jidong. Flexible strain sensor based on carbon nano-tube graphene composite film[J]. Journal of Applied Sciences,2018,18(1):90-91(in Chinese). doi: 10.3969/j.issn.2096-3424.2018.01.016
    [7] 张晓飞, 李喜德. 基于石墨烯网状结构的柔性应变传感器及其性能研究[C]//2013中国力学大会. 西安: 中国力学学会, 2013: 265.

    ZHANG Xiaofei, LI Xide. Flexible strain sensor based on graphene network structure and its performance[C]//2013 China Mechanics Conference. Xi’an: Chinese Society of Theoretical and Applied Mechanics, 2013: 265 (in Chinese).
    [8] 蔡乐, 周维亚, 解思深, 等. 碳纳米管柔性应变传感器的研究[J]. 现代物理知识, 2014(2):24-28.

    CAI Le, ZHOU Weiya, XIE Sishen, et al. Research on flexible strain sensor of carbon nanotubes[J]. Research of Modern Physics,2014(2):24-28(in Chinese).
    [9] 张翠鹏. 橡胶基阻断型柔性应变传感器的制备及性能研究[D]. 北京: 中国地质大学, 2018.

    ZHANG Cuipeng. Preparation and performance of rubber-based blocking flexible strain sensor[D]. Beijing: China University of Geosciences, 2018 (in Chinese).
    [10] PARK J J, HYUN W J, MUN S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces,2015,7(11):6317-6328.
    [11] 张阳阳, 黄英, 郝超, 等. 基于织物拉伸传感器的手势映射系统[J]. 仪器仪表学报, 2017, 38(10):2422-2429.

    ZHANG Yangyang, HUANG Ying, HAO Chao, et al. Gestures mapping system based on fabric tensile sensor[J]. Journal of Scientific Instrument,2017,38(10):2422-2429(in Chinese).
    [12] 王双, 刘玮, 刘晓霞. 柔性应变织物传感器研究进展[J]. 传感器与微系统, 2017, 36(12):1-3, 9.

    WANG Shuang, LIU Wei, LIU Xiaoxia. Research progress of flexible strain fabric sensors[J]. Journal of Sensors and Microsystems,2017,36(12):1-3, 9(in Chinese).
    [13] 韩景泉, 陆凯悦, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/天然橡胶柔性导电弹性体的合成与性能[J]. 新型炭材料, 2018, 33(4):341-350.

    HAN Jingquan, LU Kaiyue, YUE Yiying, et al. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Materials,2018,33(4):341-350(in Chinese).
    [14] 韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(1):84-89.

    HAN Jingquan, DING Qinqin, BAO Yaqian, et al. Synthesis and characterization of nanocellulose reinforced conductive hydrogel[J]. Journal of Forestry Engineering,2017,2(1):84-89(in Chinese).
    [15] LEE C J, PARK K H, HAN C J, et al. Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors[J]. Scientific Reports,2017,7(1):7959. doi: 10.1038/s41598-017-08484-y
    [16] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano,2015,9(6):5929-5936. doi: 10.1021/acsnano.5b00599
    [17] 赵木森, 于海波, 孙丽娜, 等. 基于石墨烯/PEDOT:PSS复合材料制备的可穿戴柔性传感器[J]. 中国科学: 技术科学, 2019, 49(7):851-860.

    ZHAO Musen, YU Haibo, SUN Lina, et al. Wearable flexible sensor based on graphene/PEDOT:PSS composites[J]. Scientia Sinica (Technologica),2019,49(7):851-860(in Chinese).
    [18] 韩景泉, 王绍霖, 岳一莹, 等. 纳米纤维素-聚吡咯/天然橡胶柔性导电弹性体的制备与性能[J]. 复合材料学报, 2018, 35(10):18-29.

    HAN Jingquan, WANG Shaolin, YUE Yiying, et al. Preparation and characterization of cellulose nanofibers-polypyrrole/natural rubber flexible conductive elastomer[J]. Acta Materiae Compositae Sinica,2018,35(10):18-29(in Chinese).
    [19] BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics,2018,1(5):314-321. doi: 10.1038/s41928-018-0071-7
    [20] SAHATIYA P, BADHULIKA S. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors[J]. Nanotechnology,2017,28(9):095501. doi: 10.1088/1361-6528/aa5845
    [21] 朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):282-291.

    ZHU Deju, ZHANG Chaohui, LIU Peng. Design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):282-291(in Chinese).
    [22] 张太亮, 李黎明, 田天. PU/AgNWs/PDMS弹性导电复合材料的制备及性能研究[J]. 化工新型材料, 2016, 44(5):60-62.

    ZHANG Tailiang, LI Liming, TIAN Tian. Preparation and properties of PU/AgNWs/PDMS elastic conductive composites[J]. New Chemical Materials,2016,44(5):60-62(in Chinese).
    [23] WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces,2018,10(8):7371-7380.
    [24] HAN S J, LIU C R, XU H H, et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability[J]. Nature Partner Journals Flexible Electronics,2018,2(1):16-23.
  • 加载中
图(14)
计量
  • 文章访问数:  1428
  • HTML全文浏览量:  294
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 录用日期:  2019-09-20
  • 网络出版日期:  2019-09-23
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回