留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y2O3对钛基激光熔覆层组织及性能的影响

张天刚 庄怀风 姚波 张倩 杨凡

张天刚, 庄怀风, 姚波, 等. Y2O3对钛基激光熔覆层组织及性能的影响[J]. 复合材料学报, 2020, 37(6): 1390-1400. doi: 10.13801/j.cnki.fhclxb.20190920.001
引用本文: 张天刚, 庄怀风, 姚波, 等. Y2O3对钛基激光熔覆层组织及性能的影响[J]. 复合材料学报, 2020, 37(6): 1390-1400. doi: 10.13801/j.cnki.fhclxb.20190920.001
ZHANG Tiangang, ZHUANG Huaifeng, YAO Bo, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1390-1400. doi: 10.13801/j.cnki.fhclxb.20190920.001
Citation: ZHANG Tiangang, ZHUANG Huaifeng, YAO Bo, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1390-1400. doi: 10.13801/j.cnki.fhclxb.20190920.001

Y2O3对钛基激光熔覆层组织及性能的影响

doi: 10.13801/j.cnki.fhclxb.20190920.001
基金项目: 国家自然科学基金(51371125);中央高校基本科研项目(3122018S004)
详细信息
    通讯作者:

    庄怀风,硕士研究生,研究方向为金属材料激光表面改性 E-mail:774742827@qq.com

  • 中图分类号: TG174.44

Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer

  • 摘要: 针对Ti811钛合金硬度低、耐磨性差的问题,以TC4粉、Ni45A粉和Y2O3粉为原料,采用同轴送粉激光熔覆技术在Ti811钛合金表面进行了激光熔覆制备耐磨复合涂层的实验,分析了熔覆层的组织和相组成,测试了熔覆层的显微硬度和摩擦磨损等力学性能。研究表明:复合涂层组织由枝晶TiC、依附生长于枝晶TiC表面的纳米颗粒TiC、生长于基体表面的等轴球形(近球形)TiC、金属间化合物Ti2Ni、增强相TiB、TiB2及基体α-Ti组成,所有生成相呈均匀弥散分布状态;涂层中等轴球形(近球形)TiC和Y2O3构成了复合相结构,经二维点阵错配度计算表明,Y2O3的(111)晶面与TiC的(110)晶面的二维点阵错配度δ=6.54%,因此Y2O3可作为TiC的有效异质形核核心细化晶粒;涂层的显微硬度处于HV0.5 655~700之间,较Ti811基材提高了约1.6~1.8倍;涂层的磨损机制主要为磨粒磨损,摩擦磨损性能较基材显著提升。

     

  • 图  1  粉末微观形貌

    Figure  1.  Morphologies of the powders

    图  2  TC4-Ni45A-Y2O3激光熔覆层横截面形貌

    Figure  2.  Macrograph of cross-section of TC4-Ni45A-Y2O3 laser cladding layer

    图  3  TC4-Ni45A-Y2O3复合材料涂层表面未熔粉末EDS分析结果

    Figure  3.  EDS analysis results of unmelted powders on the TC4-Ni45A-Y2O3 composite coating surface

    图  4  TC4-Ni45A-Y2O3复合材料激光熔覆层XRD图谱

    Figure  4.  XRD patterns of the TC4-Ni45A-Y2O3 composite laser cladding layer

    图  5  TC4-Ni45A-Y2O3激光熔覆层微观组织

    Figure  5.  Microstructures of TC4-Ni45A-Y2O3 laser cladding layer

    图  6  Ti-C二元合金相图[21]

    Figure  6.  Diagram of titanium-carbon binary alloy phase[21]

    图  7  TC4-Ni45A-Y2O3复合材料激光熔覆层Mapping面扫描分析结果

    Figure  7.  Mapping surface scanning analysis results of TC4-Ni45A-Y2O3 composite laser cladding layer

    图  8  Y2O3与TiC晶体学关系图

    Figure  8.  Crystal relationship betweenY2O3 and TiC

    图  9  TC4-Ni45A-Y2O3复合材料激光熔覆层显微硬度曲线

    HAZ—Heat affecting zone

    Figure  9.  Microhardness curve of TC4-Ni45A-Y2O3 composite laser cladding layer

    图  10  Ti811基材(a) 和TC4-Ni45A-Y2O3熔覆层磨损表面白光干涉三维形貌(b)及Ti811基材(c)和TC4-Ni45A-Y2O3熔覆层摩擦磨损形貌(d)

    Figure  10.  White light interference morphologies of Ti811 substrate wear surface(a) and TC4-Ni45A-Y2O3 cladding layer wear surface(b) and morphologies of friction and wear of Ti811 substrate(c) and TC4-Ni45A-Y2O3 cladding layer(d)

    表  1  Ti811钛合金化学成分

    Table  1.   Chemical composition of Ti811 alloy wt%

    AlVMoCNFeOTi
    8.10.991.050.030.010.050.06Bal.
    下载: 导出CSV

    表  2  TC4球形粉主要化学成分

    Table  2.   Main chemical composition of TC4 spherical powder wt%

    AlVFeCNOTi
    5.5-6.83.5-4.50.300.100.050.20Bal.
    下载: 导出CSV

    表  3  Ni45A球形粉主要化学成分

    Table  3.   Main chemical composition of Ni45A spherical powder wt%

    CCrBSiFeNi
    0.3-0.611.0-15.02.0-3.04.5-6.5≤5.0Bal.
    下载: 导出CSV

    表  4  TC4-Ni45A-Y2O3激光熔覆层中各物相EDS分析结果

    Table  4.   EDS analysis results of each phase in TC4-Ni45A-Y2O3 laser cladding layer

    PhaseContentCAlSiTiVCrFeNiYO
    A1(α-Ti)Mass fraction/wt%2.305.520.1778.393.544.390.655.0400
    Atom fraction/at%8.398.970.2671.373.043.700.513.7600
    A2(TiC)Mass fraction/wt%18.560.54075.510000.7304.66
    Atom fraction/at%42.460.58049.130000.3607.47
    A3(TiC)Mass fraction/wt%16.640.48074.440000.580.916.95
    Atom fraction/at%40.450.52045.540000.290.3012.90
    A4Mass fraction/wt%7.360.690.2524.230001.1248.4817.87
    Atom fraction/at%21.180.740.2623.140000.5523.5030.63
    A5(Ti2Ni)Mass fraction/wt%2.311.670.8556.831.131.991.5333.6900
    Atom fraction/at%8.952.871.4155.051.031.781.2827.6300
    下载: 导出CSV

    表  5  室温下(293 K)Y2O3与TiC二维点阵错配度计算结果

    Table  5.   Two-dimensional lattice mismatch calculation results of Y2O3 and TiC at room temperature (293 K)

    Matching planesY2O3(111) // TiC(110)Y2O3(110) // TiC(110)Y2O3(100) // TiC(100)
    Low-index crystal directions in Y2O3(111)/[uvw]Y2O3[$1\overline 1 0$][$11\bar 2$][$10\overline 1 $][001][$\overline 1 10$][$\overline 1 11$][001][010][011]
    Low-index crystal directions in TiC(110)/[uvw]TiC[001][$1\overline 1 0$][$1\overline 1 1$][001][$\overline 1 10$][$\overline 1 11$][001][010][011]
    Angle between [uvw]Y2O3 and [uvw]TiC/(º)005.264000000
    Interatomic spacing along [uvw]Y2O3/dY2O3/nm0.37220.64480.74450.26320.37220.45590.52640.52640.7445
    Interatomic spacing along [uvw]TiC/dTiC/nm0.43270.61200.74950.21640.30600.37480.43270.43270.6120
    Lattice misfit δ/%6.8121.6321.65
    下载: 导出CSV

    表  6  3 340 K下Y2O3与TiC二维点阵错配度计算结果

    Table  6.   Two-dimensional lattice mismatch calculation results of Y2O3 and TiC at 3 340 K

    Matching planesY2O3(111) // TiC(110)Y2O3(110) // TiC(110)Y2O3(100) // TiC(100)
    [uvw]Y2O3[$1\overline 1 0$][$11\bar 2$][$10\overline 1 $][001][$\overline 1 10$][$\overline 1 11$][001][010][011]
    [uvw]TiC[001][$1\overline 1 0$][$1\overline 1 1$][001][$\overline 1 10$][$\overline 1 11$][001][010][011]
    Angle between [uvw]Y2O3 and [uvw]TiC/(º)005.264000000
    dY2O3/nm0.37950.65740.75910.26840.37950.46480.53670.53670.7591
    dTiC/nm0.44140.62430.76460.22080.31220.38240.44140.44140.6243
    δ/%6.5421.5521.59
    下载: 导出CSV

    表  7  Ti811基材和TC4-Ni45A-Y2O3复合材料激光熔覆层的摩擦磨损性能参数

    Table  7.   Friction and wear property parameters of Ti811 substrate and TC4-Ni45A-Y2O3 composite laser cladding layer

    MaterialsWear volume/10-3mm3Wear depth/µmAverage friction coefficient
    Ti811 substrate195.90108.00.65
    Laser cladding layer152.38 91.50.40
    下载: 导出CSV
  • [1] 刘亚楠, 孙荣禄, 张天刚. Ni对钛合金表面稀土激光熔覆层中TiC生长的影响[J]. 金属热处理, 2018, 43(9):16-21.

    LIU Y N, SUN R L, ZHANG T G. Influence of Ni on TiC growth in rare earth laser clad layer on titanium alloy[J]. Heat Treatment of Metals,2018,43(9):16-21(in Chinese).
    [2] ZHANG X H, LIU D X. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature[J]. Rare Metals,2009,28(3):266-271. doi: 10.1007/s12598-009-0053-z
    [3] ABIOYE T E, MCCARTNEY D G, CLARE A T. Laser cladding of inconel625 wire for corrosion protection[J]. Journal of Materials Processing Technology,2015,217:232. doi: 10.1016/j.jmatprotec.2014.10.024
    [4] WENG F, CHEN C Z, YU H J. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design,2014,58:412-425.
    [5] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. A review to the laser cladding of self-lubricating composite coatings[J]. Lasers in Manufacturing and Materials Processing,2016,3(2):67-99. doi: 10.1007/s40516-016-0025-8
    [6] 张维平, 赵玉兰, 李廷举. 钛合金表面激光熔覆的研究进展[J]. 表面技术, 2007, 36(5):68-70. doi: 10.3969/j.issn.1001-3660.2007.05.023

    ZHANG W P, ZHAO Y L, LI Y J. The development of laser cladding on titanium alloy[J]. Surface Technology,2007,36(5):68-70(in Chinese). doi: 10.3969/j.issn.1001-3660.2007.05.023
    [7] 马永, 朱红梅, 孙楚光, 等. TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能[J]. 表面技术, 2017, 46(6):238-243.

    MA Y, ZHU H M, SUN C G, et al. Microstructure and properties of Y2O3-doped laser cladded composite coating on TC4 titanium alloy[J]. Surface Technology,2017,46(6):238-243(in Chinese).
    [8] WANG K L, ZHANG Q B, SUN M L, et al. Rare earth elements modification of laser-clad nickel-based alloy coatings[J]. Applied Surface Science,2001,174(3-4):191-200. doi: 10.1016/S0169-4332(01)00017-4
    [9] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9):1253-1261. doi: 10.11900/0412.1961.2018.00079

    HUANG Y, CHENG G G, XIE Y. Modification mechanism of cerium on the inclusionsin drill steel[J]. Acta Metallurgica Sinica,2018,54(9):1253-1261(in Chinese). doi: 10.11900/0412.1961.2018.00079
    [10] LI J, LUO X, LI G J. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J]. Wear,2014,310(1-2):72-82. doi: 10.1016/j.wear.2013.12.019
    [11] YUN X, ZHOU Y F, YANG J, et al. Refinement of nano-Y2O3 on microstructure of hypereutectic Fe-Cr-C hardfacing coatings[J]. Journal of Rare Earths,2015,33(6):671-678. doi: 10.1016/S1002-0721(14)60469-5
    [12] WENG F, YU H J, CHEN C Z, et al. Micro-structures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds,2015,650:178-184. doi: 10.1016/j.jallcom.2015.07.295
    [13] 冯淑容, 张述泉, 王华明. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J]. 中国激光, 2012, 39(2):66-71.

    FENG S R, ZHANG S Q, WANG H M. Wear resistance of laser clad hard particles reinforced intermetallic composite coating on TA15 alloy[J]. Chinese Journal of Lasers,2012,39(2):66-71(in Chinese).
    [14] 马玲玲, 李涵, 孙琳, 等. 钛合金表面激光熔覆Ti/Ni-AlN复合涂层的组织与摩擦磨损性能[J]. 热加工工艺, 2018, 47(4):180-184.

    MA L L, LI H, SUN L, et al. Microstructure and friction and wear properties of laser cladding Ti/Ni-Al N composite coating on titanium alloy surface[J]. Hot Working Technology,2018,47(4):180-184(in Chinese).
    [15] 张瑄珺, 李军, 王慧萍, 等. 添加Y2O3对激光熔覆原位合成TiB2和TiC增强镍基复合涂层组织的影响[J]. 机械工程材料, 2012, 36(7):17-20.

    ZHANG X J, LI J, WANG H P, et al. Effect of adding Y2O3 on microstructure of TiB2 and TiC reinforced Ni-based composite coating in-situ synthesized by laser cladding[J]. Materials for Mechanical Engineering,2012,36(7):17-20(in Chinese).
    [16] DAS A K, SHARIFF S M, ROY C A. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering[J]. Tribology International,2016,95:35-43. doi: 10.1016/j.triboint.2015.10.035
    [17] CAI L F, ZHANG Y Z, Xi M Z, et al. In-situ synthesis of TiB+TiB2/Ti composite coating by laser cladding on titanium alloy surface[J]. Special Casting & Nonferrous Alloys,2006.
    [18] WANG H M, LIU Y F. Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy[J]. Materials Science and Engineering: A,2002,338(1-2):126-132. doi: 10.1016/S0921-5093(02)00076-X
    [19] 聂金凤. 铝合金中TiC生长与演变及硼掺杂改性的研究[D]. 济南: 山东大学, 2013.

    NIE J F. Study on the growth evolution and boron-doping modification of TiC in Al alloys[D]. Ji’nan: Shandong University, 2013(in Chinese).
    [20] 马晓光. 铝熔体反应合成TiC的微观形貌与生长机制研究[D]. 济南: 山东大学, 2010.

    MA X G. Study on the morphology and growth mechanism of TiC synthesized via the Al melt reaction method[D]. Ji’nan: Shandong University, 2010(in Chinese).
    [21] 张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1):97-104.

    ZHANG T G, SUN R L. Microstructure and propeties of Nano-Ti3Al laser cladding layer prepared on Ti811 alloy surface[J]. Chinese Journal of Lasers,2018,45(1):97-104(in Chinese).
    [22] 张雪辉, 周亮亮, 李晓闲, 等. Y2O3对W-4.9Ni-2.1Fe合金摩擦磨损行为的影响[J]. 材料工程, 2017, 45(11):119-125.

    ZHANG X H, ZHOU L L, LI X X, et al. Effect of Y2O3 on friction and wear behavior of W-4.9Ni-2.1Fe alloy[J]. Journal of Materials Engineering,2017,45(11):119-125(in Chinese).
    [23] 张红霞. 钛合金表面激光熔覆陶瓷Ti-Al-Si复合涂层的组织结构与耐磨性[D]. 济南: 山东大学, 2016.

    ZHANG H X. Investigation on microstructures and wear resistance of ceramics and Ti-Al-Si composite coatings on titanium alloys by laser cladding[D]. Ji’nan: Shandong University, 2016(in Chinese).
    [24] 冯巧, 王存山, 韩立影, 等. 38CrMoAl钢表面激光合金化WC/Co-Y2O3涂层的组织和性能[J]. 中国激光, 2015, 42(8):0803001. doi: 10.3788/CJL201542.0803001

    FENG Q, WANG C S, HAN L Y, et al. Micro-structure and properties of WC/Co-Y2O3 coating fabricated by laser alloying on 38CrMoAl steel substrate[J]. Chinese Journal of Lasers,2015,42(8):0803001(in Chinese). doi: 10.3788/CJL201542.0803001
    [25] BRAMFITT B L. The Effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions,1970,1(7):1987-1995. doi: 10.1007/BF02642799
    [26] KATAGIRI S, ISHIZAWA N, MARUMO F. A new high temperature modification of face-centered cubic Y2O3[J]. Powder Diffraction,1993,8(1):60. doi: 10.1017/S0885715600017760
    [27] SHIMADA S, WATANABE J, KODAIRA K, et al. Flux growth and characterization of TiC crystals[J]. Journal of Materials Science,1989,24(7):2513-2515. doi: 10.1007/BF01174522
    [28] 李立碑, 孙玉福. 金属材料物理性能手册[M]. 北京: 机械工业出版社, 2011.

    LI L B, SUN Y F. Metal material physical properties manual[M]. Beijing: Press of China Machine, 2011(in Chinese).
    [29] SEOK H K, CHOI E Y, CHA P R, et al. Characterization of plasma-sprayed Y2O3, coating and investigation of its visual aspect change[J]. Surface & Coatings Technology,2011,205(11):3341-3346.
    [30] KUMAR A, GAUTAM R K, TYAGI R. Dry sliding wear characteristics of in situ synthe-sized Al-TiC composites[J]. Composite Interfaces,2016,23(6):1-12.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  1502
  • HTML全文浏览量:  117
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 录用日期:  2019-09-09
  • 网络出版日期:  2019-09-20
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回