留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料翼面壁板轴压稳定性

石经纬 赵娟 刘传军 李东升

石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003
引用本文: 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003
SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003
Citation: SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1321-1333. doi: 10.13801/j.cnki.fhclxb.20190917.003

复合材料翼面壁板轴压稳定性

doi: 10.13801/j.cnki.fhclxb.20190917.003
基金项目: 工信部民机专项基金(MJ-2017-F-20)
详细信息
    通讯作者:

    石经纬,博士,工程师,研究方向为复合材料民机结构有限元分析 E-mail:shijingwei@comac.cc

  • 中图分类号: TB332

Stability of composite stiffened panels under compression

  • 摘要: 基于T型长桁铺层数不同的两块复合材料翼面加筋壁板试件SC-1和SC-2,开展轴压稳定性试验研究,并提出一种预测屈曲载荷及最小后屈曲承载能力的工程分析方法,结合有限元特征值屈曲分析方法、有限元弧长法对试件的屈曲载荷、屈曲模态及后屈曲承载能力进行分析。试验结果表明,铺层数较多的试件SC-1的蒙皮局部屈曲应变较高,壁板也具有更高的屈曲载荷。在后屈曲阶段,SC-2加载到试验屈曲载荷的2.4倍未发生材料破坏和长桁蒙皮间脱粘损伤。工程分析方法和特征值屈曲分析能够准确预测壁板的屈曲载荷,最大误差分别为-9.3%和-2.8%,工程分析得到SC-2的最小后屈曲承载能力为试验屈曲载荷的2.09倍。有限元弧长法分析得到两件试件的屈曲载荷误差均小于1%,并具有壁板轴压屈曲模态预测和变形跟踪能力。

     

  • 图  1  碳纤维增强树脂(CFRP)复合材料加筋壁板试件

    Figure  1.  Carbon fiber reinforced polymer(CFRP) stiffened panel specimen

    图  2  CFRP复合材料加筋壁板应变片布置

    Figure  2.  Strain gauges distribution on CFRP composite stiffened panels

    图  3  CFRP复合材料加筋壁板轴压稳定性试验加载方式

    Figure  3.  Loading method for compression stability test of CFRP composite stiffened panels

    图  4  CFRP复合材料加筋壁板试件截面尺寸示意图

    Figure  4.  Schematic diagram of cross-section dimensions of the CFRP composite stiffened panel

    图  5  单块CFRP复合材料蒙皮试验应变曲线

    Figure  5.  Experimental strain curves on a piece of CFRP composite skin

    图  6  CFRP复合材料蒙皮横截面试验应变曲线

    Figure  6.  Experimental strain curves on a cross-section of CFRP composite skins

    图  7  CFRP复合材料长桁腹板试验应变曲线

    Figure  7.  Experimental strain curves on CFRP composite stinger web

    图  8  长桁缘条与蒙皮试验应变曲线

    Figure  8.  Experimental strain curves on skin and stringer flange

    图  9  CFRP复合材料加筋壁板SC-1的轴压屈曲模态特征值法分析结果

    Figure  9.  Buckling modes of CFRP composite stiffened panel SC-1 under compression by eigenvalue method

    图  10  CFRP复合材料加筋壁板SC-2的轴压屈曲模态特征值法分析结果

    Figure  10.  Buckling modes of CFRP composite stiffened panel SC-2 under compression by eigenvalue method

    图  11  CFRP复合材料蒙皮横截面有限元应变曲线弧长法分析结果

    Figure  11.  Strain curves of CFRP composite skin cross-section by arc-length method

    图  12  CFRP复合材料长桁腹板有限元应变曲线弧长法分析结果

    Figure  12.  Strain curves of CFRP composite string web by arc-length method

    图  13  CFRP复合材料加筋壁板试件加载端“位移-载荷”及其变化率曲线

    Figure  13.  Displacement-force and its rate of change curves of loading end of CFRP composite stiffened panel specimen

    图  14  CFRP复合材料加筋壁板试件SC-1面外位移云图

    Figure  14.  Out-of-plane displacement contours of CFRP composite stiffened panel SC-1

    图  15  CFRP复合材料加筋壁板试件SC-2面外位移云图

    Figure  15.  Out-of-plane displacement contours of CFRP composite stiffened panel SC-2

    图  16  1.2倍屈曲载荷下CFRP复合材料加筋壁板SC-1轴向应变云图

    Figure  16.  Axial strain contour of CFRP composite stiffened panel SC-1 under 1.2 times of buckling load

    图  17  2.3倍屈曲载荷下CFRP复合材料加筋壁板SC-2轴向应变云图

    Figure  17.  Axial strain contour of CFRP composite stiffened panel SC-2 under 2.3 times of buckling load

    图  18  1 150 kN时CFRP复合材料加筋壁板SC-2中间长桁位移曲线及侧向位移云图

    Figure  18.  Displacement of central stringer and transverse displacement contour of CFRP composite stiffened panel SC-2 at 1 150 kN

    表  1  X850 CFRP复合材料单向带的力学性能

    Table  1.   Mechanical properties of X850 CFRP composite prepreg

    E11/MPaE22/MPaG12/MPaν12
    158 000 9 000 4 140 0.319
    Notes: E11—Elastic modulus in fibre direction; E22—Elastic modulus transverse to fibre direction; G12—Shear modulus; ν12—Poisson’s ratio.
    下载: 导出CSV

    表  2  CFRP复合材料加筋壁板铺层顺序

    Table  2.   Stacking sequences of CFRP composite stiffened panels

    RegionStacking sequence
    Skin [45/−45/0/45/−45/0/0/90]s
    L_left(SC-1) [−45/45/0/0/0/90/−45/0/45/45/0/−45/90/0]
    L_left(SC-2) [−45/45/0/0/0/90/−45/0/45/90/0]
    L_right(SC-1) [45/−45/0/0/0/90/45/0/−45/−45/0/45/90/0]
    L_right(SC-2) [45/−45/0/0/0/90/45/0/−45/90/0]
    Insert plys [45/−45/0/0]
    下载: 导出CSV

    表  3  CFRP复合材料加筋壁板轴压屈曲载荷工程方法分析结果

    Table  3.   Buckling load of CFRP composite stiffened panels under compression by engineering method

    Specimentply,equ/mm$\eta $Pb/kN${\varepsilon _{{\rm{blk}}}}$/10−3
    SC-1 0.265 0.158 549 −1.188
    SC-2 0.252 0.164 453 −1.066
    Notes: tply,equ—Equivalent ply thickness; Pb—Buckling load; ${\varepsilon _{{\rm{blk}}}}$—Buckling strain; η—Stiffness ratio of a single skin to a whole stiffened wall.
    下载: 导出CSV

    表  4  CFRP复合材料加筋壁板轴压稳定性特征值分析结果

    Table  4.   Results of compression stability analysis of CFRP composite stiffened panels by eigenvalue method

    ModeEigenvalueBuckling load/kN
    SC-1SC-2SC-1SC-2
    1 1.545 1.214 618 486
    2 1.547 1.217 619 487
    3 1.553 1.265 621 506
    4 1.612 1.338 645 535
    5 1.668 1.400 667 560
    6 1.684 1.403 674 561
    下载: 导出CSV
  • [1] MA X Q, YANG Z J, GU Y Z, et al. Manufacture and characterization of carbon fibre composite stiffened skin by resin film infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites,2014,33(17):1559-1573. doi: 10.1177/0731684414543213
    [2] HUANG C K. Study on co-cured composite panels with blade-shaped stiffeners[J]. Composites Part A: Applied Science and Manufacturing,2003,34(5):403-410. doi: 10.1016/S1359-835X(03)00081-2
    [3] SERESTA O, GURDAL Z, ADAMS D B, et al. Optimal design of composite wing structures with blended laminates[J]. Composites Part B: Engineering,2007,38(4):469-480. doi: 10.1016/j.compositesb.2006.08.005
    [4] 周雷敏, 孙沛. 波音787客机的复合材料国际化制造[J]. 高科技纤维与应用, 2013, 38(2):57-61. doi: 10.3969/j.issn.1007-9815.2013.02.011

    ZHOU Leimin, SUN Pei. Boeing 787 composites’ international manufacturing[J]. Hi-Tech Fiber & Application,2013,38(2):57-61(in Chinese). doi: 10.3969/j.issn.1007-9815.2013.02.011
    [5] 吴志恩. A350的复合材料构件制造[J]. 航空制造技术, 2013(13):32-35. doi: 10.3969/j.issn.1671-833X.2013.13.003

    WU Zhien. Manufacture of A350 composites structure[J]. Aeronautical Manufacturing Technology,2013(13):32-35(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.13.003
    [6] 霍世慧, 王富生, 王佩艳, 等. 复合材料机翼加筋壁板稳定性分析[J]. 应用力学学报, 2010, 27(2):423-428.

    HUO Shihui, WANG Fusheng, WANG Peiyan, et al. Stability analysis on the ribbed panel of the composite wing[J]. Chinese Journal of Applied Mechanics,2010,27(2):423-428(in Chinese).
    [7] 展全伟, 范学领, 徐红炉. 复合材料加筋壁板稳定性影响分析[J]. 机械设计与制造, 2012(3):37-39.

    ZHAN Quanwei, FAN Xueling, XU Honglu. Influence analysis on the stability of composite ribbed panel[J]. Machinery Design & Manufacture,2012(3):37-39(in Chinese).
    [8] 裴金利, 陈秀华. 复合材料帽形加筋结构稳定性研究[J]. 航空计算技术, 2011, 41(6):84-87. doi: 10.3969/j.issn.1671-654X.2011.06.022

    PEI Jinli, CHEN Xiuhua. Research on stability of hat-stiffened composites structures[J]. Aeronautical Compu-ting Technique,2011,41(6):84-87(in Chinese). doi: 10.3969/j.issn.1671-654X.2011.06.022
    [9] 郑洁, 任善. 复合材料加筋壁板稳定性分析方法研究[J]. 航空科学技术, 2015, 26(3):44-48. doi: 10.3969/j.issn.1007-5453.2015.03.010

    ZHENG Jie, REN Shan. Study on stability analysis method of composite stiffened plates[J]. Aeronautical Science & Technology,2015,26(3):44-48(in Chinese). doi: 10.3969/j.issn.1007-5453.2015.03.010
    [10] 穆朋刚, 万小朋, 赵美英. 复合材料加筋壁板稳定性分析研究[J]. 机械科学与技术, 2009, 28(9):1190-1193. doi: 10.3321/j.issn:1003-8728.2009.09.016

    MU Penggang, WAN Xiaopeng, ZHAO Meiying. A study of the stability of composite stiffened plates[J]. Mechanical Science and Technology for Aerospace Engineering,2009,28(9):1190-1193(in Chinese). doi: 10.3321/j.issn:1003-8728.2009.09.016
    [11] 李乐坤, 李曙林, 常飞, 等. 复合材料加筋壁板压缩屈曲与后屈曲分析[J]. 南京航空航天大学学报, 2016, 48(4):563-568.

    LI Lekun, LI Shulin, CHANG Fei, et al. Buckling and post-buckling of composite stiffened panel under compression[J]. Journal of Nanjing University of Aeronautics & Astronautic,2016,48(4):563-568(in Chinese).
    [12] LEI G, YANG S S. A study on the buckling of stiffened composite fuselage panel[J]. Hydromechatronics Engineering,2015,43(6):91-94, 101.
    [13] 王菲菲, 崔德刚, 熊强, 等. 复合材料加筋板后屈曲承载能力工程分析方法[J]. 北京航空航天大学学报, 2013, 39(4):494-497.

    WANG Feifei, CUI Degang, XIONG Qiang, et al. Engineering analysis of postbuckling loading capability for composite stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(4):494-497(in Chinese).
    [14] 谭翔飞, 何宇廷, 冯宇. 航空碳纤维树脂基复合材料加筋板压缩屈曲及后屈曲性能[J]. 航空动力学报, 2016, 31(10):2359-2369.

    TAN Xiangfei, HE Yuting, FENG Yu. Buckling and post-buckling performance of aeronautic carbon fibre reinforced resin composite stiffened panel under compression[J]. Journal of Aerospace Power,2016,31(10):2359-2369(in Chinese).
    [15] STEVEN G P, FALZON B G. Buckling mode transition in hat-stiffened composite panels loaded in uniaxial compression[J]. Composite Structures,1997,37(2):253-267. doi: 10.1016/S0263-8223(97)80017-7
    [16] 万玉敏, 张发, 刘长喜, 等. 飞机典型薄壁复合材料夹层结构整体屈曲[J]. 复合材料学报, 2018, 35(8):2235-2245.

    WAN Yumin, ZHANG Fa, LIU Changxi, et al. Overall buckling of typical thin-wall sandwich composite applied on the aircraft[J]. Acta Materiae Compositae Sinica,2018,35(8):2235-2245(in Chinese).
    [17] FENG Y, HE Y T, ZHANG H Y, et al. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial com-pression[J]. Composite Structures,2017(164):248-262.
    [18] 刘璐, 关志东, 徐荣章, 等. 脱胶缺陷尺寸对复合材料加筋板屈曲及后屈曲特性的影响[J]. 复合材料学报, 2014, 31(3):749-758.

    LIU Lu, GUAN Zhidong, XU Rongzhang, et al. Effect of debond size on buckling and post-buckling behaviors of composite stiffened panels[J]. Acta Materiae Compositae Sinica,2014,31(3):749-758(in Chinese).
    [19] FALZON B G, STEVENS K A, DAVIES G O. Postbuckling behavior of a blade-stiffened composite panel loaded in uniaxial compression[J]. Composites Part A: Applied Science and Manufacturing,2000,31(5):459-468. doi: 10.1016/S1359-835X(99)00085-8
    [20] DAVILA G C, CAMANHO P P, TURON A. Effective simulation of delamination in aeronautical structures using shells and cohesive elements[J]. Journal of Aircraft,2008,45(2):663-672. doi: 10.2514/1.32832
    [21] TURON A, CAMANHO P P, COSTA J, et al. A damage model for the simulation of delamination in advanced compo-sites under variable-mode loading[J]. Mechanics of Materials,2006,38(11):1072-1089. doi: 10.1016/j.mechmat.2005.10.003
    [22] LYNCH C, MURPHY A, PRICE M, et al. The computational post buckling analysis of fuselage stiffened panels loaded in compression[J]. Thin-Walled Structures,2008,42(10):1445-1464.
    [23] FAROOQN U, MYLER P. Finite element simulation of buckling-induced failure of carbon fibre-reinforced laminated composite panels embedded with damage zones[J]. Acta Astronautica,2015,115:314-329. doi: 10.1016/j.actaastro.2015.05.039
    [24] GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A: Applied Science and Manufacturing,2003,34(7):623-633. doi: 10.1016/S1359-835X(03)00098-8
    [25] ORIFICI C, SHAH S A, HERSZBERG I, et al. Failure analysis in postbuckled composite T-sections[J]. Composite Structures,2008,86(1-3):146-153. doi: 10.1016/j.compstruct.2008.03.022
    [26] 修英姝, 崔德刚. 复合材料层合板稳定性的铺层优化设计[J]. 工程力学, 2015, 22(6):212-216.

    XIU Yingshu, CUI Degang. Ply optimization design for stability of composite laminates[J]. Engineering Mechanics,2015,22(6):212-216(in Chinese).
    [27] TODOROKI A, SEKISHIRO M. Stacking sequence optimization to maximize the buckling load of blade-stiffened panels with strength constraints using the iterative fractal branch and bound method[J]. Composites Part B: Engineering,2008,39(5):842-850. doi: 10.1016/j.compositesb.2007.10.003
    [28] VOSOUGHI A R, DARABI A, DEHGHANI FORKHORJI H. Optimum stacking sequences of thick laminated compo-site plates for maximizing buckling load using FE-GAs-PSO[J]. Composite Structures,2017,159:361-367. doi: 10.1016/j.compstruct.2016.09.085
    [29] KAZEMI M, VERCHERY G. Design of composite laminated plates for maximum buckling load with stiffness and elastic modulus constraints[J]. Composite Structures,2017,148:27-38.
    [30] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002.

    Institute of Aeronautics China. Stability handbook of composites structure design[M]. Beijing: Aviation Industry Press, 2002(in Chinese).
    [31] 汪厚冰, 陈昊, 雷安民, 等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报, 2018, 35(8):2014-2022.

    WANG Houbing, CHEN Hao, LEI Anmin, et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica,2018,35(8):2014-2022(in Chinese).
    [32] Composite Materials Handbook. Volume 3. Polymer matrix composites materials usage, design, and Analysis: MIL-HDBK-17-3F[S]. US: [s. n.], 2002.
    [33] TURON A, DAVILA C G, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics,2007(74):1665-1682.
    [34] HASHIN Z, ROTEM A. A fatigue criterion for fiber-reinforced materials[J]. Journal of Composite Materials,1973,7:448-464. doi: 10.1177/002199837300700404
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  1029
  • HTML全文浏览量:  150
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 录用日期:  2019-09-09
  • 网络出版日期:  2019-09-17
  • 刊出日期:  2020-06-15

目录

    /

    返回文章
    返回